The search functionality is under construction.

Author Search Result

[Author] Jingbo LI(3hit)

1-3hit
  • Method for Identification of Nonlinear Parameters and Its Application to Data Analysis for Aerospace Relay Reliability

    Huimin LIANG  Jingbo LIN  Guofu ZHAI  Wenlong WANG  

     
    PAPER-Relays & Switches

      Vol:
    E89-C No:8
      Page(s):
    1173-1176

    A method which uses the moving time and the over travel time of contact to discover the characteristics of contact and the reliability of aerospace relay is proposed. The Gauss-Newton method and its improved form (Macalto method) are used to identify the nonlinear mathematical model of the parameter during armature initial moving period, which is from the coil is energized at a rated voltage to the moment the armature begins to move. The validity of the method is verified by results of actual experiments and analysis.

  • Macroscopic Method of Quantization of Evanescent Electromagnetic Fields with Taken into Account of Medium Dispersion

    Masahiro AGU  Jingbo LI  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E81-C No:8
      Page(s):
    1350-1357

    Macroscopic method for quantization of the evanescent fields brought about by total reflection is presented. Here, a semi-infinite space is assumed to be filled with a transparent dispersive dielectric with dielectric constant ε(ω) to the left of the plane z = 0, and be empty to the right of the plane. The wave is assumed to be incident from the left, and so the whole field is composed of the triplet of incident, reflected, and transmitted waves labeled by a continuous wave vector index. The transmitted wave in free space may be evanescent. The triplet is shown exactly without using slowly varying field approximation in dispersive medium to form orthogonal mode for different wave vectors, which provides the basis for the quantization of the triplet with taken into account of medium dispersion. The exact orthogonal relation reduces to the well known one if the dielectric is nondispersive, ε/ω = 0. By using the field expansion in terms of the orthogonal triplet modes, the total field energy is found to be the sum of the energies of independent harmonic oscillators. A discussion is also made on the wave momentum of evanescent field.

  • On Attractive Force of Evanescent Electromagnetic Field on Dielectric Slab*

    Jingbo LI  Masahiro AGU  

     
    PAPER

      Vol:
    E79-C No:10
      Page(s):
    1308-1311

    The electromagnetic force of evanescent field acting on dielectric slab is studied with the use of Maxwell stress tensor. The results show that dielectrics slab may receive always an attractive force when the incident wave is evanescent field while a pressure or an attractive force when the wave is propagating one. The magnitude of the attractive force by evanescent field is much larger than that of the propagating wave. And here some numerical examples are given.