1-1hit |
Lianshan SUN Jingxue WEI Hanchao DU Yongbin ZHANG Lifeng HE
This paper presents an improved YOLOv3 network, named MSFF-YOLOv3, for precisely detecting variable surface defects of aluminum profiles in practice. First, we introduce a larger prediction scale to provide detailed information for small defect detection; second, we design an efficient attention-guided block to extract more features of defects with less overhead; third, we design a bottom-up pyramid and integrate it with the existing feature pyramid network to construct a twin-tower structure to improve the circulation and fusion of features of different layers. In addition, we employ the K-median algorithm for anchor clustering to speed up the network reasoning. Experimental results showed that the mean average precision of the proposed network MSFF-YOLOv3 is higher than all conventional networks for surface defect detection of aluminum profiles. Moreover, the number of frames processed per second for our proposed MSFF-YOLOv3 could meet real-time requirements.