1-3hit |
A new inter-client synchronization framework employing a server-client coordinated adaptive playout and error control toward one-to-many (i.e., multicast) media streaming is discussed in this paper. The proposed adaptive playout mechanism controls the playout speed of audio and video by adopting the time-scale modification of audio. Based on the overall synchronization status as well as the buffer occupancy level, the playout speed of each client is manipulated within a perceptually tolerable range. By coordinating the playout speed of each client, the inter-client synchronization with respect to the target presentation time is smoothly achieved. Furthermore, RTCP-compatible signaling between the server and group-clients is performed to achieve the inter-client synchronization and error recovery, where the exchange of controlling message is restricted. Simulation results show the performance of the proposed multicast media streaming framework.
Jinyong JO Soyeon LEE JongWon KIM
Overlay networking makes it easy for users add new network functionalities while keeping existing Internet connectivity intact. This paper introduces SCONE (Service-COmposable InterNEt) as a networking service to facilitate the management of service overlay networking. By looking into the structure of programmable overlay nodes, SCONE provides programmable IP service gateways (PSGs) that ensure high-speed per-flow packet processing for overlay networking. In order to meet the data-rate requirements of various host applications, each PSG is accelerated by hardware packet processing for its data plane. It also leverages the space-efficient pattern matching of entity cloning and provides localized (i.e., de-centralized) services to assist the scalable support for software-defined networking (SDN). An experiment result shows that the proposed PSGs can support high-fidelity overlay networking from both performance and scalability perspectives.
The recent growth in available network bandwidth envisions the wide-spread use of broadband applications such as uncompressed HD-SDI (High-definition serial digital interface) over IP. These cutting-edge applications are also driving the development of a media-oriented infrastructure for networked collaboration. This paper introduces imCast, a high-quality digital media platform dealing with uncompressed HD-SDI over IP, and discusses its internal architecture in depth. imCast mainly provides cost-effective hardware-based approaches for high-quality media acquisition and presentation; flexible software-based approaches for presentation; and allows for economical network transmission. Experimental results (taken over best-effort IP networks) will demonstrate the functional feasibility and performance of imCast.