The search functionality is under construction.

Author Search Result

[Author] Joanna WEISSENBERG(2hit)

1-2hit
  • Analytical Model of the Single Threshold Mechanism with Hysteresis for Multi-Service Networks

    Maciej SOBIERAJ  Maciej STASIAK  Joanna WEISSENBERG  Piotr ZWIERZYKOWSKI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E95-B No:1
      Page(s):
    120-132

    This paper presents a new generalized single threshold model that can be used in communications and cellular networks. In the proposed model, called Single Hysteresis Model (SHM), it is assumed that the amount of resources accessible for a new call of a given class can depend on two load areas of the system. The switching between areas is modulated by the two-state Markov chain which determines the average time the system spends in a particular load area, i.e. the area in which calls of selected classes with a reduced amount of resources (high load area) and with the initial amount of resources (low load area) are serviced. The results obtained for the discussed analytical model are compared with the results of the simulation of an exemplary WCDMA radio interface carrying a mixture of different multi-rate traffic streams. The research study confirms high accuracy of the proposed model.

  • A Queueing Model of a Multi-Service System with State-Dependent Distribution of Resources for Each Class of Calls

    Slawomir HANCZEWSKI  Maciej STASIAK  Joanna WEISSENBERG  

     
    PAPER

      Vol:
    E97-B No:8
      Page(s):
    1592-1605

    This paper presents a new, accurate multi-service model of a queueing system with state-dependent distribution of resources for each class of calls. The analysis of the considered queueing system was carried out at both the microstate and macrostate levels. The proposed model makes it possible to evaluate averaged parameters of queues for individual classes of calls that are offered to the system. In addition, the paper proposes a new algorithm for a determination of the occupancy distribution in the queueing system at the microstate level. The results of the calculations are compared with the results of a digital simulation for multi-service queueing systems with state-independent distribution of resources.