1-2hit |
John D. MOORES Jeff KORN Katherine L. HALL Steven G. FINN Kristin A. RAUSCHENBACH
Recent work in the area of ultrafast optical time-division multiplexed (OTDM) networking at MIT Lincoln Laboratory is presented. A scalable helical local area network or HLAN architecture, presented elsewhere as an architecture well-suited to ultrafast OTDM LANs and MANs, is considered in the context of wide area networking. Two issues arise in scaling HLAN to the wide area. The first is protocol extension, and the second is supporting the required bandwidth on the long-haul links. In this paper we discuss these challenges and describe progress made in both architecture and technologies required for scaling HLAN to the wide area.
John D. MOORES Jeff KORN Katherine L. HALL Steven G. FINN Kristin A. RAUSCHENBACH
Recent work in the area of ultrafast optical time-division multiplexed (OTDM) networking at MIT Lincoln Laboratory is presented. A scalable helical local area network or HLAN architecture, presented elsewhere as an architecture well-suited to ultrafast OTDM LANs and MANs, is considered in the context of wide area networking. Two issues arise in scaling HLAN to the wide area. The first is protocol extension, and the second is supporting the required bandwidth on the long-haul links. In this paper we discuss these challenges and describe progress made in both architecture and technologies required for scaling HLAN to the wide area.