1-2hit |
Jong Yoon HWANG Kwang Soon KIM Keum-Chan WHANG
In this letter, a blind frequency offset estimation algorithm is proposed for OFDM systems. The proposed method exploits the intrinsic phase shift between neighboring samples in a single OFDM symbol, incurred by a frequency offset. The proposed algorithm minimizes a novel cost function, which is the squared error of the candidate frequency offset compensated signals from two different observation windows. Also, the solution of the proposed algorithm is given by an explicit equation, which does not require any iterative calculation. It is shown that the performance of the proposed method is better than those of the conventional methods, especially in the presence of multipath channels. This is due to the fact that the proposed method is insensitive to inter-symbol interference (ISI).
Jong Yoon HWANG Kwang Soon KIM Yong-Seok KIM Keum-Chan WHANG
In this letter, a novel blind CFO estimation algorithm for the uplink of an OFDMA system is proposed. The proposed method exploits the inherent redundant information in OFDMA symbols and does not require additional pilot or preamble overhead. Since it is a post-FFT estimator, it does not use filter banks to separate the desired user's signal from the others in the time domain. Hence, the subcarriers of a certain user are not restricted to be clustered in the frequency domain. Therefore, the proposed estimator can be applied to OFDMA systems with an arbitrary subcarrier assignment over the entire bandwidth, including IEEE 802.16e, to obtain sufficient frequency diversity in a frequency selective fading channel. The proposed method can be efficiently used for continuous tracking of all active users' CFOs only with two FFT windows within a single OFDM symbol. From simulation results, the performance of the proposed scheme is shown better than that uses preamble symbols.