The search functionality is under construction.

Author Search Result

[Author] Jong-Moon CHUNG(13hit)

1-13hit
  • A New Blind Equalization Method Based on Negentropy Minimization for Constant Modulus Signals

    Sooyong CHOI  Jong-Moon CHUNG  Wun-Cheol JEONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1207-1210

    A new blind adaptive equalization method for constant modulus signals based on minimizing the approximate negentropy of the estimation error for a finite-length equalizer is presented. We consider the approximate negentropy using nonpolynomial expansions of the estimation error as a new performance criterion to improve the performance of a linear equalizer using the conventional constant modulus algorithm (CMA). Negentropy includes higher order statistical information and its minimization provides improved convergence, performance, and accuracy compared to traditional methods, such as the CMA, in terms of the bit error rate (BER). Also, the proposed equalizer shows faster convergence characteristics than the CMA equalizer and is more robust to nonlinear distortion than the CMA equalizer.

  • Outage Capacity Analysis of MIMO Macro-Selection Systems

    Wun-Cheol JEONG  Dongfang LIU  Jong-Moon CHUNG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:6
      Page(s):
    1916-1917

    Multiple-input multiple-output (MIMO) systems applying macroscopic selection diversity (MSD) are analyzed in composite fading channels through derived expressions of capacity outage probability. The MSD system uses a maximum capacity MIMO base station (BS) selection algorithm, where the results show a significant improvement in outage capacity.

  • A Negentropy Minimization Approach to Adaptive Beamforming Assisted Receivers

    Sooyong CHOI  Jong-Moon CHUNG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:11
      Page(s):
    3283-3286

    In this letter, we introduce a new adaptive beamforming assisted receiver based on minimizing the approximate negentropy (NEGMIN) of the estimation error. We consider the approximate negentropy by using a nonpolynomial expansion of the estimation error as a new performance criterion to improve the performance of adaptive beamforming receivers based on the minimizing minimum mean squared error (MMSE) criteria. Negentropy includes higher order statistical information and its minimization provides improved converge, performance, and accuracy compared to traditional methods such as MMSE in terms of bit error rate (BER).

  • Dynamic Multipoint Relay Candidate Selection for Broadcast Data Aggregation in Mobile Ad-Hoc Networks

    Hyung-Weon CHO  Jong-Moon CHUNG  Myunghwan SEO  Jongho PARK  Jihyoung AHN  Bumkwi CHOI  Tae-Jin LEE  

     
    LETTER-Network

      Vol:
    E94-B No:9
      Page(s):
    2629-2633

    In OLSR, only selected multipoint relays (MPRs) are allowed to forward broadcast data during the flooding process, which reduces the message propagation overhead compared to the classical flooding mechanism. Since every node in a network selects its own MPRs independently, many nodes may be MPRs of other nodes, which results in many collisions in the medium access control (MAC) layer under heavy traffic conditions. In this paper, we propose an MPR candidate selection mechanism for broadcast data aggregation in mobile ad-hoc networks. The proposed MPR candidate selection scheme can reduce the number of MPR candidates and appropriately spread MPR candidates over the whole network area. The performance of the proposed MPR candidate selection mechanism is investigated via mathematical analysis and simulations. We also propose a broadcast data aggregation mechanism to achive efficient resource utilization. Performance evaluation indicates that the proposed MPR candidate selection and broadcast data aggregation mechanism is efficient under heavy broadcast traffic load conditions.

  • Circulation Technique of Distributed Space Time Trellis Codes with AF Relaying

    Sung Kwon HONG  Jong-Moon CHUNG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E94-A No:2
      Page(s):
    872-874

    In this letter, a circulation-based distributed space time trellis code (DSTTC) technique for amplify-and-forward (AF) relaying is proposed. The proposed circulation technique is a method of configuring new protocols from the existing protocols of which the performance is dependent on specific source to relay links. The simulation results show that the newly developed protocol is less dependent on weak conditions of specific links and a performance gain in frame error rate (FER) can be obtained over the original protocol.

  • Measurement and Stochastic Modeling of Vertical Handover Interruption Time of Smartphone Real-Time Applications on LTE and Wi-Fi Networks

    Sungjin SHIN  Donghyuk HAN  Hyoungjun CHO  Jong-Moon CHUNG  

     
    PAPER-Network

      Pubricized:
    2016/11/16
      Vol:
    E100-B No:4
      Page(s):
    548-556

    Due to the rapid growth of applications that are based on Internet of Things (IoT) and real-time communications, mobile traffic growth is increasing exponentially. In highly populated areas, sudden concentration of numerous mobile user traffic can cause radio resource shortage, where traffic offloading is essential in preventing overload problems. Vertical handover (VHO) technology which supports seamless connectivity across heterogeneous wireless networks is a core technology of traffic offloading. In VHO, minimizing service interruption is a key design factor, since service interruption deteriorates service performance and degrades user experience (UX). Although 3GPP standard VHO procedures are designed to prevent service interruption, severe quality of service (QoS) degradation and severe interruption can occur in real network environments due to unintended disconnections with one's base station (BS) or access point (AP). In this article, the average minimum handover interruption time (HIT) (i.e., the guaranteed HIT influence) between LTE and Wi-Fi VHO is analyzed and measured based on 3GPP VHO access and decision procedures. In addition, the key parameters and procedures which affect HIT performance are analyzed, and a reference probability density function (PDF) for HIT prediction is derived from Kolmogorov-Smirnov test techniques.

  • M-Ary Soft Information Relaying of Distributed Turbo Codes

    Sung Kwon HONG  Jong-Moon CHUNG  Daehwan KIM  

     
    LETTER-Coding Theory

      Vol:
    E94-A No:2
      Page(s):
    869-871

    In this letter, an M-ary extension to the soft information relaying (SIR) scheme is derived for distributed turbo codes (DTCs) to enable higher data rate wireless communications with extended ranges. The M-ary based SIR design for DTCs is based on constructing a revised mapping constellation of the signals for calculating metrics from the soft mapping symbols. The numerical results show that DTCs using the proposed M-ary SIR with gray mapped quadrature phase shift keying (QPSK) provides a significant 5 dB performance gain over hard information relaying (HIR) DTCs at the 10-3 bit error rate (BER) level.

  • Response Time Constrained CPU Frequency and Priority Control Scheme for Improved Power Efficiency in Smartphones

    Sung-Woong JO  Taeyoung HA  Taehyun KYONG  Jong-Moon CHUNG  

     
    PAPER-Computer System

      Pubricized:
    2016/09/30
      Vol:
    E100-D No:1
      Page(s):
    65-78

    Dynamic voltage and frequency scaling (DVFS) is an essential mechanism for power saving in smartphones and mobile devices. Central processing unit (CPU) load based DVFS algorithms are widely used due to their simplicity of implementation. However, such algorithms often lead to a poor response time, which is one of the most important factors of user experience, especially for interactive applications. In this paper, the response time is mathematically modeled by considering the CPU frequency and characteristics of the running applications based on the Linux kernel's completely fair scheduler (CFS), and a Response time constrained Frequency & Priority (RFP) control scheme for improved power efficiency of smartphones is proposed. In the RFP algorithm, the CPU frequency and priority of the interactive applications are adaptively adjusted by estimating the response time in real time. The experimental results show that RFP can save energy up to 24.23% compared to the ondemand governor and up to 7.74% compared to HAPPE while satisfying the predefined threshold of the response time in Android-based smartphones.

  • Hybrid Concatenated Space-Time Coding Systems

    Bon-Jin KU  Jong-Moon CHUNG  Changeon KANG  

     
    LETTER-Fundamental Theories

      Vol:
    E86-B No:12
      Page(s):
    3614-3616

    The effects of hybrid concatenated space-time (HC-ST) codes applying iterative a posteriori probability (APP) decoding are investigated. The bit error rate (BER) and frame error rate (FER) performance of the iterative decoded hybrid Tarokh, Seshadri, Calderbank space-time (TSC ST) coded system under flat Rayleigh fading is analyzed. At the FER 10-2 level the results show that the serially concatenated space-time (SC-ST) codes provide a coding gain of 3 dB compared to the TSC ST codes, where an additional coding gain of 1 dB beyond the SC-ST code performance can be obtained applying the HC-ST coding topology.

  • Adaptive Packet Size Control Using Beta Distribution Mobility Estimation for Rapidly Changing Mobile Networks

    Dong-Chul GO  Jong-Moon CHUNG  Su Young LEE  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E92-B No:2
      Page(s):
    599-603

    An adaptive algorithm to optimize the packet size in wireless mobile networks with Gauss-Markov mobility is presented. The proposed control algorithm conducts adaptive packet size control for mobile terminals that experience relatively fast changing channel conditions, which could be caused by fast mobility or other rapidly changing interference conditions. Due to the fast changing channel conditions, the packet size controller uses short channel history for channel status estimation and takes advantage of a pre-calculated probability density function (PDF) of the distance of the mobile nodes in the estimation process. The packet size is adapted to maximize the communication performance through automatic repeat request (ARQ). The adaptive packet size controlling algorithm is based on an estimation of the channel error rate and the link statistics obtained from the mobility pattern. It was found that the distribution of the link distance among mobile nodes following the Markov-Gauss mobility pattern in a circular communication range well fits the Beta PDF. By adapting the Beta PDF from the mobility pattern, the results show that it is possible to estimate the channel condition more accurately and thereby improve the throughput and utilization performance in rapidly changing wireless mobile networking systems.

  • Two Network Coding Diversity Enhancement Schemes for Wireless Relay Systems

    Sung Kwon HONG  Jong-Moon CHUNG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:10
      Page(s):
    2916-2919

    In this letter, two new network coding (NC) diversity enhancement schemes are introduced for wireless relay systems. Conventional diversity enhancement approaches for relay systems suffer from error propagation at each relay and exhibit second order diversity performance. In the proposed schemes, when a relay experiences a decoding failure, the relay makes a request to have the source transmit the NC frames to the destination in its time slot. Due to this operation, the proposed schemes prevent error propagation and achieve near third order diversity performance. The proposed schemes are compared to conventional schemes based on the derived mathematical error bounds and simulation performance, both of which demonstrate the superiority of the proposed schemes.

  • Iterative Decoding of Serially Concatenated Space-Time Codes in WCDMA Systems with Short Frames

    Bon-Jin KU  Jong-Moon CHUNG  Changeon KANG  

     
    LETTER-Wireless Communication Technology

      Vol:
    E87-B No:2
      Page(s):
    357-359

    In this letter, we investigate serially concatenated space-time codes (SC-STs) applying iterative decoding topologies in wideband code division multiple access (WCDMA) communication systems. In the decoding algorithm, an iterative (turbo) process is used, where a priori probability (APP) is exchanged between the symbol-by-symbol space-time (ST) decoder and the bit-by-bit convolutional decoder. The experimental results show that in a Rayleigh fading channel environment the serially concatenated interleaved space-time coding systems show significant error correction capability, and based on the applied system configurations, the nonrecursive ST code outperforms the recursive ST code.

  • Space-Time Convolutional Coding Based on Linear Zw Codes

    Sung Kwon HONG  Jong-Moon CHUNG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E87-B No:12
      Page(s):
    3794-3797

    In this letter, a generalized extension of the linear Z4 space time (ST) code of [1] is conducted to obtain a linear Zw structure that can be flexibly used for various numbers of transmitter antennas, number of states, and modulation types. Additionally, the corresponding recursive systematic (RS) code structure is presented. The optimal code of the quadrature phase shift keying (QPSK) and 8 phase shift keying (PSK) modulation with 2 transmit antenna case is obtained from a code search and analyzed in comparison to the codes of [5]. Additionally, the structure for the 8, 32, and other number of states that were not provided in are [1] presented in this paper.