1-1hit |
Suthee PHOOJARUENCHANACHAI Kamol UAHCHINKUL Jongkol NGAMWIWIT Yothin PREMPRANEERACH
In this paper, we present the theoretical development to stabilize a class of uncertain time-delay system. The system under consideration is described in state space model containing distributed delay, uncertain parameters and disturbance. The main idea is to transform the system state into an equivalent one, which is easier to analyze its behavior and stability. Then, a computational method of robust controller design is presented in two parts. The first part is based on solving a Riccati equation arising in the optimal control theory. In the second part, the finite dimensional Lyapunov min-max approach is employed to cope with the uncertainties. Finally, we show how the resulting control law ensures asymptotic stability of the overall system.