The search functionality is under construction.

Author Search Result

[Author] Julan XIE(2hit)

1-2hit
  • Sea Clutter Suppression and Weak Target Signal Enhancement Using an Optimal Filter

    Jinfeng HU  Huanrui ZHU  Huiyong LI  Julan XIE  Jun LI  Sen ZHONG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E99-A No:1
      Page(s):
    433-436

    Recently, many neural networks have been proposed for radar sea clutter suppression. However, they have poor performance under the condition of low signal to interference plus noise ratio (SINR). In this letter, we put forward a novel method to detect a small target embedded in sea clutter based on an optimal filter. The proposed method keeps the energy in the frequency cell under test (FCUT) invariant, at the same time, it minimizes other frequency signals. Finally, detect target by judging the output SINR of every frequency cell. Compared with the neural networks, the algorithm proposed can detect under lower SINR. Using real-life radar data, we show that our method can detect the target effectively when the SINR is higher than -39dB which is 23dB lower than that needed by the neural networks.

  • Performance Analysis of the Generalized Sidelobe Canceller in Finite Sample Size and Correlative Interference Situations

    Xu WANG  Julan XIE  Zishu HE  Qi ZHANG  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:11
      Page(s):
    2358-2369

    In the scenario of finite sample size, the performance of the generalized sidelobe canceller (GSC) is still affected by the desired signal even if all signal sources are independent with each other. Firstly, the novel expression of weight vector of the auxiliary array is derived under the circumstances of finite sample size. Utilizing this new weight vector and considering the correlative interferences, the general expression for the interference cancellation ratio (CR) is developed. Then, the impacts of the CR performance are further analyzed for the parameters including the input signal-to-noise ratio (SNR), the auxiliary array size, the correlation coefficient between the desired signal and interference as well as the snapshots of the sample data, respectively. Some guidelines can thus be given for the practical application. Numerical simulations demonstrate the agreement between the simulation results and the analytical results.