1-1hit |
Sang-Woo BAN Jun-Ki CHO Soon-Ki JUNG Minho LEE
We propose a new active vision system that mimics a saccadic movement of human eye. It is implemented based on a new computational model using neural networks. In this model, the visual pathway was divided in order to categorize a saccadic eye movement into three parts, each of which was then individually modeled using different neural networks to reflect a principal functionality of brain structures related with the saccadic eye movement in our brain. Initially, the visual cortex for saccadic eye movements was modeled using a self-organizing feature map, then a modified learning vector quantization network was applied to imitate the activity of the superior colliculus relative to a visual stimulus. In addition, a multilayer recurrent neural network, which is learned by an evolutionary computation algorithm, was used to model the visual pathway from the superior colliculus to the oculomotor neurons. Results from a computer simulation show that the proposed computational model is effective in mimicking the human eye movements during a saccade. Based on the proposed model, an active vision system using a CCD type camera and motor system was developed and demonstrated with experimental results.