1-2hit |
Kuo-Jen LIN Chih-Jen CHENG Hsin-Cheng SU Jwu-E CHEN
A CMOS current-mode S-shape correction circuit with shape-adjustable control is proposed for suiting different LCD panel's characteristics from different manufactures. The correction shape is divided into three segments for easy curve-fitting using three lower order polynomials. Each segment could be realized by a corresponding current-mode circuit. The proposed circuit consists of several control points which are designed for tuning the correction shape. The S-shape correction circuit was fabricated using the 0.35 µm TSMC CMOS technology. The measured input dynamic range of the circuit is from 0 µA to 220 µA. The -3 dB bandwidth of the circuit is up to 262 MHz in a high input current region.
Pei-Wen LUO Jwu-E CHEN Chin-Long WEY
Device mismatch plays an important role in the design of accurate analog circuits. The common centroid structure is commonly employed to reduce device mismatches caused by symmetrical layouts and processing gradients. Among the candidate placements generated by the common centroid approach, however, whichever achieves better matching is generally difficult to be determined without performing the time-consuming yield evaluation process. In addition, this rule-based methodology makes it difficult to achieve acceptable matching between multiple capacitors and to handle an irregular layout area. Based on a spatial correlation model, this study proposed a design methodology for yield enhancement of analog circuits using switched-capacitor techniques. An efficient and effective placement generator is developed to derive a placement for a circuit to achieve the highest or near highest correlation coefficient and thus accomplishing a better yield performance. A simple yield analysis is also developed to evaluate the achieved yield performance of a derived placement. Results show that the proposed methodology derives a placement which achieves better yield performance than those generated by the common centroid approach.