1-3hit |
Jyh-Neng YANG Ming-Juei WU Chen-Yi LEE
Loss compensation in a RF CMOS active inductor with using a capacitor is proposed. This simple compensation technique yields a negative conductance characteristic that can compensate for the constant internal loss of active devices. Simulation results show that the inductor obtains a maximum Q-value of 1.2E8, an inductance value in the range of 50 nH to 450 nH, and a 1.4E-6 Ω of minimum total equivalent loss in the range of 0.6 GHz to 1.3 GHz.
Chen-Yi LEE Jyh-Neng YANG Yi-Chang CHENG
An RF CMOS active inductor with a novel loss compensation circuit network is proposed. Performance of this active inductor can be improved by adding a novel network, which simultaneously reduces parallel and series losses. Consequently, this technique not only increases Q value, inductance, and operating frequency, but also reduces power consumption and circuit complexity. Simulation results show that better performance indices can be achieved, such as minimum total equivalent loss of 1 mΩ, maximum Q value about 3E5, and inductance value from 20 nH to 45 nH in the RF range of 0.6 GHz to 1.6 GHz. Power dissipation is around 1.76 mW under 2.5 V dc supply voltage.
Jyh-Neng YANG Yi-Chang CHENG Chen-Yi LEE
A novel RF CMOS high Q-value active inductor is proposed in this work by using simple cascode RC feedback compensation technique. The performance of this active inductor has maximum Q-value about 1.2E6, inductance value from 3.5 nH to 4.5 nH and 3E-5Ω of minimum total equivalent loss, in the range of 1.2 GHz to 2 GHz.