The search functionality is under construction.

Author Search Result

[Author] Kaoru ARAKAWA(10hit)

1-10hit
  • Fuzzy Rule-Based Edge Detection Using Multiscale Edge Images

    Kaoru ARAKAWA  

     
    PAPER

      Vol:
    E83-A No:2
      Page(s):
    291-300

    Fuzzy rule-based edge detection using multiscale edge images is proposed. In this method, the edge image is obtained by fuzzy approximate reasoning from multiscale edge images which are obtained by derivative operators with various window sizes. The effect of utilizing multiscale edge images for edge detection is already known, but how to design the rules for deciding edges from multiscale edge images is not clarified yet. In this paper, the rules are represented in a fuzzy style, since edges are usually defined ambiguously, and the fuzzy rules are designed optimally by a training method. Here, the fuzzy approximate reasoning is expressed as a nonlinear function of the multiscale edge image data, and the nonlinear function is optimized so that the mean square error of the edge detection be the minimum. Computer simulations verify its high performance for actual images.

  • FOREWORD

    Kaoru ARAKAWA  

     
    FOREWORD

      Vol:
    E83-A No:2
      Page(s):
    274-274
  • Spatial-Temporal Regularized Correlation Filter with Precise State Estimation for Visual Tracking

    Zhaoqian TANG  Kaoru ARAKAWA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/12/15
      Vol:
    E105-A No:6
      Page(s):
    914-922

    Recently, the performances of discriminative correlation filter (CF) trackers are getting better and better in visual tracking. In this paper, we propose spatial-temporal regularization with precise state estimation based on discriminative correlation filter (STPSE) in order to achieve more significant tracking performance. First, we consider the continuous change of the object state, using the information from the previous two filters for training the correlation filter model. Here, we train the correlation filter model with the hand-crafted features. Second, we introduce update control in which average peak-to-correlation energy (APCE) and the distance between the object locations obtained by HOG features and hand-crafted features are utilized to detect abnormality of the state around the object. APCE and the distance indicate the reliability of the filter response, thus if abnormality is detected, the proposed method does not update the scale and the object location estimated by the filter response. In the experiment, our tracker (STPSE) achieves significant and real-time performance with only CPU for the challenging benchmark sequence (OTB2013, OTB2015, and TC128).

  • A Color Scheme Method by Interactive Evolutionary Computing Considering Contrast of Luminance and Design Property

    Keiko YAMASHITA  Kaoru ARAKAWA  

     
    PAPER-Image

      Vol:
    E99-A No:11
      Page(s):
    1981-1989

    A method of color scheme is proposed considering contrast of luminance between adjacent regions and design property. This method aims at setting the contrast of luminance high, in order to make the image understandable to visually handicapped people. This method also realizes preferable color design for visually normal people by assigning color components from color combination samples. Interactive evolutionary computing is adopted to design the luminance and the color, so that the luminance and color components are assigned to each region appropriately on the basis of human subjective criteria. Here, the luminance is designed first, and then color components are assigned, keeping the luminance unchanged. Since samples of fine color combinations are applied, the obtained color design is also fine and harmonic. Computer simulations verify the high performance of this system.

  • Digital Signal Processing Using Fuzzy Clustering

    Kaoru ARAKAWA  Yasuhiko ARAKAWA  

     
    PAPER

      Vol:
    E74-A No:11
      Page(s):
    3554-3558

    A novel digital signal processing technique fuzzy filtering is proposed for estimating nonstationary signals with ambiguous changes, which are contaminated by additive white Gaussian noises. In this filter, fuzzy clustering is utilized for classifying signal components into groups in which the signal characteristics are considered to be similar. Since the boundary between the signal groups is ambiguous, the fuzzy clustering produces a better effect than crisp clustering. Moreover, robust characteristics are obtained for various values of the parameters and types of processed signals. Computer simulations successfully demonstrate its superior capability of filtering.

  • Correlation Filter-Based Visual Tracking Using Confidence Map and Adaptive Model

    Zhaoqian TANG  Kaoru ARAKAWA  

     
    PAPER-Vision

      Vol:
    E103-A No:12
      Page(s):
    1512-1519

    Recently, visual trackers based on the framework of kernelized correlation filter (KCF) achieve the robustness and accuracy results. These trackers need to learn information on the object from each frame, thus the state change of the object affects the tracking performances. In order to deal with the state change, we propose a novel KCF tracker using the filter response map, namely a confidence map, and adaptive model. This method firstly takes a skipped scale pool method which utilizes variable window size at every two frames. Secondly, the location of the object is estimated using the combination of the filter response and the similarity of the luminance histogram at multiple points in the confidence map. Moreover, we use the re-detection of the multiple peaks of the confidence map to prevent the target drift and reduce the influence of illumination. Thirdly, the learning rate to obtain the model of the object is adjusted, using the filter response and the similarity of the luminance histogram, considering the state of the object. Experimentally, the proposed tracker (CFCA) achieves outstanding performance for the challenging benchmark sequence (OTB2013 and OTB2015).

  • Impulsive Noise Removal in Color Image Using Interactive Evolutionary Computing

    Yohei KATSUYAMA  Kaoru ARAKAWA  

     
    PAPER

      Vol:
    E93-A No:11
      Page(s):
    2184-2192

    A new type of digital filter for removing impulsive noise in color images is proposed using interactive evolutionary computing. This filter is realized as a rule-based system containing switching median filters. This filter detects impulsive noise in color images with rules and applies switching median filters only at the noisy pixel. Interactive evolutionary computing (IEC) is adopted to optimize the filter parameters, considering the subjective assessment by human vision. In order to detect impulsive noise precisely, complicated rules with multiple parameters are required. Here, the relationship between color components and the degree of peculiarity of the pixel value are utilized in the rules. Usually, optimization of such a complicated rule-based system is difficult, but IEC enables such optimization easily. Moreover, human taste and subjective sense are highly considered in the filter performance. Computer simulations are shown for noisy images to verify its high performance.

  • A Method for Generating Color Palettes with Deep Neural Networks Considering Human Perception

    Beiying LIU  Kaoru ARAKAWA  

     
    PAPER-Image, Vision, Neural Networks and Bioengineering

      Pubricized:
    2021/09/30
      Vol:
    E105-A No:4
      Page(s):
    639-646

    A method to generate color palettes from images is proposed. Here, deep neural networks (DNN) are utilized in order to consider human perception. Two aspects of human perception are considered; one is attention to image, and the other is human preference for colors. This method first extracts N regions with dominant color categories from the image considering human attention. Here, N is the number of colors in a color palette. Then, the representative color is obtained from each region considering the human preference for color. Two deep neural-net systems are adopted here, one is for estimating the image area which attracts human attention, and the other is for estimating human preferable colors from image regions to obtain representative colors. The former is trained with target images obtained by an eye tracker, and the latter is trained with dataset of color selection by human. Objective and subjective evaluation is performed to show high performance of the proposed system compared with conventional methods.

  • Interactive Evolutionary System for Synthesizing Facial Caricature with Non-planar Expression

    Tatsuya UGAI  Keita SATO  Kaoru ARAKAWA  Hiroshi HARASHIMA  

     
    PAPER

      Vol:
    E97-A No:11
      Page(s):
    2154-2160

    A method to synthesize facial caricatures with non-planar expression is proposed. Several methods have been already proposed to synthesize facial caricatures automatically, but they mainly synthesize plane facial caricatures which look somewhat monotonous. In order to generate expressive facial caricature, the image should be expressed in non-planar style, expressing the depth of the face by shading and highlighting. In this paper, a new method to express such non-planar effect in facial caricatures is proposed by blending the grayscale information of the real face image into the plane caricature. Some methods also have been proposed to generate non-planar facial caricature, but the proposed method can adjust the degree of non-planar expression by interactive evolutionary computing, so that the obtained expression is satisfied by the user based on his/her subjective criteria. Since the color of the face looks changed, when the grayscale information of the natural face image is mixed, the color information of the skin area are also set by interactive evolutionary computing. Experimental results show the high performance of the proposed method.

  • Nonlinear Inverse Filter Using ε -Filter and Its Application to Image Restoration

    Hiroaki WATABE  Kaoru ARAKAWA  Yasuhiko ARAKAWA  

     
    PAPER

      Vol:
    E83-A No:2
      Page(s):
    283-290

    A nonlinear inverse filter is proposed for restoring signals degraded by a linear system and additive Gaussian noise. The proposed filter consists of combination of a linear high pass filter and an ε-filter, which is modified from the cascaded linear filter. The nonlinear property of the ε-filter is utilized to suppress pre-enhanced additive random noise and to restore sharp edges. It is demonstrated that the filter can be reduced to a multi-layered neural network model, and the optimal design is described by using the back propagation algorithm. The nonlinear function is approximated by a piecewise linear function, which results in simple and robust training algorithm. An application to image restoration is also presented, illustrating the effectiveness over the linear filter, especially when the amplitude of additive noise is small.