1-3hit |
Ning GUAN Katsuaki IZOE Katsuhiro TAKENAGA Ryuji SUZUKI Kazuhiko AIKAWA Kuniharu HIMENO
We have developed a novel type of holey fiber which has a conventional raised-index core surrounded by two layers of air holes with different sizes. The fiber has single-mode operation and shows a low bending loss even for an extremely small bending diameter and a low splicing loss for fusion splicing to a conventional single-mode fiber. The structure and the properties of the fiber are reported in this paper.
Masahiro KASHIWAGI Katsuhiro TAKENAGA Kentaro ICHII Tomoharu KITABAYASHI Shoji TANIGAWA Kensuke SHIMA Shoichiro MATSUO Munehisa FUJIMAKI Kuniharu HIMENO
We review our recent work on Yb-doped and hybrid-structured solid photonic bandgap fibers (Yb-HS-SPBGFs) for linearly-polarized fiber lasers oscillating in the small gain wavelength range from 1160 nm to 1200 nm. The stack-and-draw or pit-in-jacket method is employed to fabricate two Yb-HS-SPBGFs. Both of the fiber shows optical filtering property for eliminating ASE in the large gain wavelength range from 1030 nm to 1130 nm and enough high birefringence for maintaining linear polarization, thanks to the photonic bandgap effect and the induced birefringence of the hybrid structure. The fiber attenuation of the Yb-HS-SPBGF fabricated by the pit-in-jacket method is much lower than that of the Yb-HS-SPBGF fabricated by stack-and-draw method. Linearly-polarized single stage fiber lasers using Yb-HS-SPBGFs are also demonstrated. Laser oscillation at 1180 nm is confirmed without parasitic lasing in the fiber lasers. High output power and high slope efficiency in linearly-polarized single-cavity fiber laser using the low-loss Yb-HS-SPGF fabricated by the pit-in-jacket method are achieved. Narrow linewidth, high polarization extinction ratio and high beam quality are also confirmed, which are required for high-efficient frequency-doubling. A compact and high-power yellow-orange frequency-doubling laser would be realized by using a linearly-polarized single-cavity fiber laser employing a low-loss Yb-HS-SPBGF.
Katsuhiro TAKENAGA Yoko ARAKAWA Shoji TANIGAWA Ning GUAN Shoichiro MATSUO Kunimasa SAITOH Masanori KOSHIBA
The length dependence of the crosstalk in multi-core fibers has been investigated by introducing random fluctuation along longitudinal direction. The power coupling coefficients in the coupled-power theory in heterogeneous multi-core fiber with seven cores were estimated based on consideration of the power coupling coefficients of the homogeneous multi-core fiber. The crosstalk can be quantitatively evaluated by employing coupled-power theory instead of coupled-mode theory.