The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Kazunori YAMAMOTO(2hit)

1-2hit
  • Performance Evaluation of ACK-Based and NAK-Based Flow Control Mechanisms for Reliable Multicast Communications

    Kazunori YAMAMOTO  Yoshitsugu SAWA  Miki YAMAMOTO  Hiromasa IKEDA  

     
    LETTER-Network

      Vol:
    E84-B No:8
      Page(s):
    2313-2316

    In this paper, we evaluate the performance of flow control mechanisms for reliable multicast under several retransmission approaches in terms of scalability. The mechanisms examined are a window-based flow control mechanism for ACK-based retransmission approaches and a rate-based flow control mechanism for NAK-based retransmission approaches. Our simulation results show that the NAK-based flow control mechanism has better scalability and higher throughput than the ACK-based flow control mechanism, and the delay incurred by a NAK suppression mechanism does not affect the performance of multicast flow control.

  • Congestion Control for Reliable Multicast Achieving TCP Fairness

    Kazunori YAMAMOTO  Miki YAMAMOTO  Hiromasa IKEDA  

     
    PAPER

      Vol:
    E85-B No:1
      Page(s):
    183-190

    In the paper, we propose a congestion control scheme for reliable multicast communication which enables TCP fairness and prevents a drop-to-zero problem. The proposed congestion control scheme is rate-based one based on NAKs from receivers and cooperatively works with a flow control scheme. The congestion control scheme consists of two components of a rate-based controller and a selection mechanism of a representative. The rate-based controller runs between the sender and the representative and achieves TCP fairness and fast response to losses at the representative. The selection mechanism of the representative allows the sender to select the representative in a scalable manner, in which the sender makes use of NAKs from receivers to select it. In the paper, we also propose the switchover mechanism of the flow and congestion control schemes which enables the sender to use either of them adaptively based on network situations. When the network is congested, the congestion control scheme works to share network resources fairly with competing TCP flows. Otherwise, the flow control scheme works to adapt the transmission rate to the slowest receiver. We verify the performance of our proposed schemes by using computer simulation.