The search functionality is under construction.

Author Search Result

[Author] Kazushi YAMASHINA(2hit)

1-2hit
  • FPGA Components for Integrating FPGAs into Robot Systems

    Takeshi OHKAWA  Kazushi YAMASHINA  Hitomi KIMURA  Kanemitsu OOTSU  Takashi YOKOTA  

     
    PAPER-Emerging Applications

      Pubricized:
    2017/11/17
      Vol:
    E101-D No:2
      Page(s):
    363-375

    A component-oriented FPGA design platform is proposed for robot system integration. FPGAs are known to be a power-efficient hardware platform, but the development cost of FPGA-based systems is currently too high to integrate them into robot systems. To solve this problem, we propose an FPGA component that allows FPGA devices to be easily integrated into robot systems based on the Robot Operating System (ROS). ROS-compliant FPGA components offer a seamless interface between the FPGA hardware and software running on the CPU. Two experiments were conducted using the proposed components. For the first experiment, the results show that the execution time of an FPGA component for image processing was 1.7 times faster than that of the original software-based component and was 2.51 times more power efficient than an ordinary PC processor, despite substantial communication overhead. The second experiment showed that an FPGA component for sensor fusion was able to process multiple sensor inputs efficiently and with very low latency via parallel processing.

  • Automatic Generation Tool of FPGA Components for Robots Open Access

    Takeshi OHKAWA  Kazushi YAMASHINA  Takuya MATSUMOTO  Kanemitsu OOTSU  Takashi YOKOTA  

     
    PAPER-Design Tools

      Pubricized:
    2019/03/01
      Vol:
    E102-D No:5
      Page(s):
    1012-1019

    In order to realize intelligent robot system, it is required to process large amount of data input from complex and different kinds of sensors in a short time. FPGA is expected to improve process performance of robots due to better performance per power consumption than high performance CPU, but it has lower development productivity than software. In this paper, we discuss automatic generation of FPGA components for robots. A design tool, developed for easy integration of FPGA into robots, is proposed. The tool named cReComp can automatically convert circuit written in Verilog HDL into a software component compliant to a robot software framework ROS (Robot Operation System), which is the standard in robot development. To evaluate its productivity, we conducted a subject experiment. As a result, we confirmed that the automatic generation is effective to ease the development of FPGA components for robots.