The search functionality is under construction.

Author Search Result

[Author] Kei HASHIMOTO(5hit)

1-5hit
  • Bayesian Context Clustering Using Cross Validation for Speech Recognition

    Kei HASHIMOTO  Heiga ZEN  Yoshihiko NANKAKU  Akinobu LEE  Keiichi TOKUDA  

     
    PAPER-Speech and Hearing

      Vol:
    E94-D No:3
      Page(s):
    668-678

    This paper proposes Bayesian context clustering using cross validation for hidden Markov model (HMM) based speech recognition. The Bayesian approach is a statistical technique for estimating reliable predictive distributions by treating model parameters as random variables. The variational Bayesian method, which is widely used as an efficient approximation of the Bayesian approach, has been applied to HMM-based speech recognition, and it shows good performance. Moreover, the Bayesian approach can select an appropriate model structure while taking account of the amount of training data. Since prior distributions which represent prior information about model parameters affect estimation of the posterior distributions and selection of model structure (e.g., decision tree based context clustering), the determination of prior distributions is an important problem. However, it has not been thoroughly investigated in speech recognition, and the determination technique of prior distributions has not performed well. The proposed method can determine reliable prior distributions without any tuning parameters and select an appropriate model structure while taking account of the amount of training data. Continuous phoneme recognition experiments show that the proposed method achieved a higher performance than the conventional methods.

  • Integration of Spectral Feature Extraction and Modeling for HMM-Based Speech Synthesis

    Kazuhiro NAKAMURA  Kei HASHIMOTO  Yoshihiko NANKAKU  Keiichi TOKUDA  

     
    PAPER-HMM-based Speech Synthesis

      Vol:
    E97-D No:6
      Page(s):
    1438-1448

    This paper proposes a novel approach for integrating spectral feature extraction and acoustic modeling in hidden Markov model (HMM) based speech synthesis. The statistical modeling process of speech waveforms is typically divided into two component modules: the frame-by-frame feature extraction module and the acoustic modeling module. In the feature extraction module, the statistical mel-cepstral analysis technique has been used and the objective function is the likelihood of mel-cepstral coefficients for given speech waveforms. In the acoustic modeling module, the objective function is the likelihood of model parameters for given mel-cepstral coefficients. It is important to improve the performance of each component module for achieving higher quality synthesized speech. However, the final objective of speech synthesis systems is to generate natural speech waveforms from given texts, and the improvement of each component module does not always lead to the improvement of the quality of synthesized speech. Therefore, ideally all objective functions should be optimized based on an integrated criterion which well represents subjective speech quality of human perception. In this paper, we propose an approach to model speech waveforms directly and optimize the final objective function. Experimental results show that the proposed method outperformed the conventional methods in objective and subjective measures.

  • A Bayesian Framework Using Multiple Model Structures for Speech Recognition

    Sayaka SHIOTA  Kei HASHIMOTO  Yoshihiko NANKAKU  Keiichi TOKUDA  

     
    PAPER-Speech and Hearing

      Vol:
    E96-D No:4
      Page(s):
    939-948

    This paper proposes an acoustic modeling technique based on Bayesian framework using multiple model structures for speech recognition. The aim of the Bayesian approach is to obtain good prediction of observation by marginalizing all variables related to generative processes. Although the effectiveness of marginalizing model parameters was recently reported in speech recognition, most of these systems use only “one” model structure, e.g., topologies of HMMs, the number of states and mixtures, types of state output distributions, and parameter tying structures. However, it is insufficient to represent a true model distribution, because a family of such models usually does not include a true distribution in most practical cases. One of solutions of this problem is to use multiple model structures. Although several approaches using multiple model structures have already been proposed, the consistent integration of multiple model structures based on the Bayesian approach has not seen in speech recognition. This paper focuses on integrating multiple phonetic decision trees based on the Bayesian framework in HMM based acoustic modeling. The proposed method is derived from a new marginal likelihood function which includes the model structures as a latent variable in addition to HMM state sequences and model parameters, and the posterior distributions of these latent variables are obtained using the variational Bayesian method. Furthermore, to improve the optimization algorithm, the deterministic annealing EM (DAEM) algorithm is applied to the training process. The proposed method effectively utilizes multiple model structures, especially in the early stage of training and this leads to better predictive distributions and improvement of recognition performance.

  • A Reordering Model Using a Source-Side Parse-Tree for Statistical Machine Translation

    Kei HASHIMOTO  Hirofumi YAMAMOTO  Hideo OKUMA  Eiichiro SUMITA  Keiichi TOKUDA  

     
    PAPER-Machine Translation

      Vol:
    E92-D No:12
      Page(s):
    2386-2393

    This paper presents a reordering model using a source-side parse-tree for phrase-based statistical machine translation. The proposed model is an extension of IST-ITG (imposing source tree on inversion transduction grammar) constraints. In the proposed method, the target-side word order is obtained by rotating nodes of the source-side parse-tree. We modeled the node rotation, monotone or swap, using word alignments based on a training parallel corpus and source-side parse-trees. The model efficiently suppresses erroneous target word orderings, especially global orderings. Furthermore, the proposed method conducts a probabilistic evaluation of target word reorderings. In English-to-Japanese and English-to-Chinese translation experiments, the proposed method resulted in a 0.49-point improvement (29.31 to 29.80) and a 0.33-point improvement (18.60 to 18.93) in word BLEU-4 compared with IST-ITG constraints, respectively. This indicates the validity of the proposed reordering model.

  • A Bayesian Approach to Image Recognition Based on Separable Lattice Hidden Markov Models

    Kei SAWADA  Akira TAMAMORI  Kei HASHIMOTO  Yoshihiko NANKAKU  Keiichi TOKUDA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2016/09/05
      Vol:
    E99-D No:12
      Page(s):
    3119-3131

    This paper proposes a Bayesian approach to image recognition based on separable lattice hidden Markov models (SL-HMMs). The geometric variations of the object to be recognized, e.g., size, location, and rotation, are an essential problem in image recognition. SL-HMMs, which have been proposed to reduce the effect of geometric variations, can perform elastic matching both horizontally and vertically. This makes it possible to model not only invariances to the size and location of the object but also nonlinear warping in both dimensions. The maximum likelihood (ML) method has been used in training SL-HMMs. However, in some image recognition tasks, it is difficult to acquire sufficient training data, and the ML method suffers from the over-fitting problem when there is insufficient training data. This study aims to accurately estimate SL-HMMs using the maximum a posteriori (MAP) and variational Bayesian (VB) methods. The MAP and VB methods can utilize prior distributions representing useful prior information, and the VB method is expected to obtain high generalization ability by marginalization of model parameters. Furthermore, to overcome the local maximum problem in the MAP and VB methods, the deterministic annealing expectation maximization algorithm is applied for training SL-HMMs. Face recognition experiments performed on the XM2VTS database indicated that the proposed method offers significantly improved image recognition performance. Additionally, comparative experiment results showed that the proposed method was more robust to geometric variations than convolutional neural networks.