1-2hit |
Fill-a-Pix is a pencil-and-paper puzzle, which is popular worldwide since announced by Conceptis in 2003. It provides a rectangular grid of squares that must be filled in to create a picture. Precisely, we are given a rectangular grid of squares some of which has an integer from 0 to 9 in it, and our task is to paint some squares black so that every square with an integer has the same number of painted squares around it including the square itself. Despite its popularity, computational complexity of Fill-a-Pix has not been known. We in this paper show that the puzzle is NP-complete, ASP-complete, and #P-complete via a parsimonious reduction from the Boolean satisfiability problem. We also consider the fewest clues problem of Fill-a-Pix, where the fewest clues problem is recently introduced by Demaine et al. for analyzing computational complexity of designing “good” puzzles. We show that the fewest clues problem of Fill-a-Pix is Σ2P-complete.
Picross 3D is a popular single-player puzzle video game for the Nintendo DS. It presents a rectangular parallelepiped (i.e., rectangular box) made of unit cubes, some of which must be removed to construct an object in three dimensions. Each row or column has at most one integer on it, and the integer indicates how many cubes in the corresponding 1D slice remain when the object is complete. Kusano et al. showed that Picross 3D is NP-complete and Kimura et al. showed that the counting version, the another solution problem, and the fewest clues problem of Picross 3D are #P-complete, NP-complete, and Σ2P-complete, respectively, where those results are shown for the restricted input that the rectangular parallelepiped is of height four. On the other hand, Igarashi showed that Picross 3D is NP-complete even if the height of the input rectangular parallelepiped is one. Extending the result by Igarashi, we in this paper show that the counting version, the another solution problem, and the fewest clues problem of Picross 3D are #P-complete, NP-complete, and Σ2P-complete, respectively, even if the height of the input rectangular parallelepiped is one. Since the height of the rectangular parallelepiped of any instance of Picross 3D is at least one, our hardness results are best in terms of height.