1-2hit |
Kei UTSUGI Akiko OBATA Hiroki SATO Ryuta AOKI Atsushi MAKI Hideaki KOIZUMI Kazuhiko SAGARA Hiroaki KAWAMICHI Hirokazu ATSUMORI Takusige KATURA
We have developed a prototype optical brain-computer interface (BCI) system that can be used by an operator to manipulate external, electrically controlled equipment. Our optical BCI uses near-infrared spectroscopy and functions as a compact, practical, unrestrictive, non-invasive brain-switch. The optical BCI system measured spatiotemporal changes in the hemoglobin concentrations in the blood flow of a subject's prefrontal cortex at 22 measurement points. An exponential moving average (EMA) filter was applied to the data, and then their weighted sum with a task-related parameter derived from a pretest is utilized for time-indicated control (GO-STOP) of an external object. In experiments using untrained subjects, the system achieved control patterns within an accuracy of 6 sec for more than 80% control.
Ryo NAKASHIMA Kei UTSUGI Keita TAKAHASHI Takeshi NAEMURA
We propose a new stereo image retargeting method based on the framework of shift-map image editing. Retargeting is the process of changing the image size according to the target display while preserving as much of the richness of the image as possible, and is often applied to monocular images and videos. Retargeting stereo images poses a new challenge because pixel correspondences between the stereo pair should be preserved to keep the scene's structure. The main contribution of this paper is integrating a stereo correspondence constraint into the retargeting process. Among several retargeting methods, we adopt shift-map image editing because this framework can be extended naturally to stereo images, as we show in this paper. We confirmed the effectiveness of our method through experiments.