The search functionality is under construction.

Author Search Result

[Author] Kenichiro SATO(3hit)

1-3hit
  • Incentive-Rewarding Mechanism for User-position Control in Mobile Services

    Makoto YOSHINO  Kenichiro SATO  Ryoichi SHINKUMA  Tatsuro TAKAHASHI  

     
    PAPER

      Vol:
    E91-B No:10
      Page(s):
    3132-3140

    When the number of users in a service area increases in mobile multimedia services, no individual user can obtain satisfactory radio resources such as bandwidth and signal power because the resources are limited and shared. A solution for such a problem is user-position control. In the user-position control, the operator informs users of better communication areas (or spots) and navigates them to these positions. However, because of subjective costs caused by subjects moving from their original to a new position, they do not always attempt to move. To motivate users to contribute their resources in network services that require resource contributions for users, incentive-rewarding mechanisms have been proposed. However, there are no mechanisms that distribute rewards appropriately according to various subjective factors involving users. Furthermore, since the conventional mechanisms limit how rewards are paid, they are applicable only for the network service they targeted. In this paper, we propose a novel incentive-rewarding mechanism to solve these problems, using an external evaluator and interactive learning agents. We also investigated ways of appropriately controlling rewards based on user contributions and system service quality. We applied the proposed mechanism and reward control to the user-position control, and demonstrated its validity.

  • Incentive Mechanism for P2P Content Sharing over Heterogenous Access Networks

    Kenichiro SATO  Ryo HASHIMOTO  Makoto YOSHINO  Ryoichi SHINKUMA  Tatsuro TAKAHASHI  

     
    PAPER

      Vol:
    E91-B No:12
      Page(s):
    3821-3830

    In peer-to-peer (P2P) content sharing, users can share their content by contributing their own resources to one another. However, since there is no incentive for contributing contents or resources to others, users may attempt to obtain content without any contribution. To motivate users to contribute their resources to the service, incentive-rewarding mechanisms have been proposed. On the other hand, emerging wireless technologies, such as IEEE 802.11 wireless local area networks, beyond third generation (B3G) cellular networks and mobile WiMAX, provide high-speed Internet access for wireless users. Using these high-speed wireless access, wireless users can use P2P services and share their content with other wireless users and with fixed users. However, this diversification of access networks makes it difficult to appropriately assign rewards to each user according to their contributions. This is because the cost necessary for contribution is different in different access networks. In this paper, we propose a novel incentive-rewarding mechanism called EMOTIVER that can assign rewards to users appropriately. The proposed mechanism uses an external evaluator and interactive learning agents. We also investigate a way of appropriately controlling rewards based on the system service's quality and managing policy.

  • Incentive Service Differentiation for P2P Content Sharing by Wireless Users

    Masato YAMADA  Kenichiro SATO  Ryoichi SHINKUMA  Tatsuro TAKAHASHI  

     
    PAPER-Network

      Vol:
    E90-B No:12
      Page(s):
    3561-3571

    Wireless content sharing where peers share content and services via wireless access networks requires user contributions, as in fixed P2P content sharing. However, in wireless access environments, since the resources of mobile terminals are strictly limited, mobile users are not as likely to contribute as ones in fixed environments. Therefore, incentives to encourage user contributions are more significant in wireless access environments. Although an incentive service differentiation architecture where the content transfer rate is adjusted according to the contributions of each downloading user has been already proposed for fixed P2P, it may not work well in wireless access environments because several factors effect wireless throughput. In this paper, we propose a novel architecture for contribution-based transfer-rate differentiation using wireless quality of service (QoS) techniques that motivates users to contribute their resources for wireless content sharing. We also propose a radio resource assignment method for our architecture. Computer simulations and game-theoretic calculations validate our architecture.