The search functionality is under construction.

Author Search Result

[Author] Kenjiro YAMANAKA(2hit)

1-2hit
  • New Directions for a Japanese Academic Backbone Network Open Access

    Shigeo URUSHIDANI  Shunji ABE  Kenjiro YAMANAKA  Kento AIDA  Shigetoshi YOKOYAMA  Hiroshi YAMADA  Motonori NAKAMURA  Kensuke FUKUDA  Michihiro KOIBUCHI  Shigeki YAMADA  

     
    INVITED PAPER

      Pubricized:
    2014/12/11
      Vol:
    E98-D No:3
      Page(s):
    546-556

    This paper describes an architectural design and related services of a new Japanese academic backbone network, called SINET5, which will be launched in April 2016. The network will cover all 47 prefectures with 100-Gigabit Ethernet technology and connect each pair of prefectures with a minimized latency. This will enable users to leverage evolving cloud-computing powers as well as draw on a high-performance platform for data-intensive applications. The transmission layer will form a fully meshed, SDN-friendly, and reliable network. The services will evolve to be more dynamic and cloud-oriented in response to user demands. Cyber-security measures for the backbone network and tools for performance acceleration and visualization are also discussed.

  • A Nationwide 400-Gbps Backbone Network for Research and Education in Japan Open Access

    Takashi KURIMOTO  Koji SASAYAMA  Osamu AKASHI  Kenjiro YAMANAKA  Naoya KITAGAWA  Shigeo URUSHIDANI  

     
    INVITED PAPER

      Pubricized:
    2023/06/01
      Vol:
    E106-B No:12
      Page(s):
    1275-1285

    This paper describes the architectural design, services, and operation and monitoring functions of Science Information NETwork 6 (SINET6), a 400-Gigabit Ethernet-based academic backbone network launched on a nationwide scale in April 2022. In response to the requirements from universities and research institutions, SINET upgraded its world-class network speed, improved its accessibility, enhanced services and security, incorporated 5G mobile functions, and strengthened international connectivity. With fully-meshed connectivity and fast rerouting, it attains nationwide high performance and high reliability. The evaluation results of network performance are also reported.