The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Kitaek KWON(1hit)

1-1hit
  • Neural Networks with Interval Weights for Nonlinear Mappings of Interval Vectors

    Kitaek KWON  Hisao ISHIBUCHI  Hideo TANAKA  

     
    PAPER-Mapping

      Vol:
    E77-D No:4
      Page(s):
    409-417

    This paper proposes an approach for approximately realizing nonlinear mappings of interval vectors by interval neural networks. Interval neural networks in this paper are characterized by interval weights and interval biases. This means that the weights and biases are given by intervals instead of real numbers. First, an architecture of interval neural networks is proposed for dealing with interval input vectors. Interval neural networks with the proposed architecture map interval input vectors to interval output vectors by interval arithmetic. Some characteristic features of the nonlinear mappings realized by the interval neural networks are described. Next, a learning algorithm is derived. In the derived learning algorithm, training data are the pairs of interval input vectors and interval target vectors. Last, using a numerical example, the proposed approach is illustrated and compared with other approaches based on the standard back-propagation neural networks with real number weights.