The search functionality is under construction.

Author Search Result

[Author] Kohkichi TSUJI(13hit)

1-13hit
  • FOREWORD

    Kohkichi TSUJI  

     
    FOREWORD

      Vol:
    E82-A No:3
      Page(s):
    411-411
  • FOREWORD

    Kohkichi TSUJI  

     
    FOREWORD

      Vol:
    E83-A No:11
      Page(s):
    2165-2165
  • NP-Hardness of Liveness Problem of Bounded Asymmetric Choice Net

    Atsushi OHTA  Kohkichi TSUJI  

     
    LETTER

      Vol:
    E85-A No:5
      Page(s):
    1071-1074

    This letter treats computational complexity of bounded asymmetric choice (AC) net. AC net is a subclass of Petri net that properly includes the class of well-known extended free choice net. It is shown that satisfiability problem of Boolean expressions is polynomial time reducible to liveness problem of bounded AC nets. This implies that the problem is NP-hard.

  • Computational Complexity of Liveness Problem of Normal Petri Net

    Atsushi OHTA  Kohkichi TSUJI  

     
    PAPER

      Vol:
    E92-A No:11
      Page(s):
    2717-2722

    Petri net is a powerful modeling tool for concurrent systems. Liveness, which is a problem to verify there exists no local deadlock, is one of the most important properties of Petri net to analyze. Computational complexity of liveness of a general Petri net is deterministic exponential space. Liveness is studied for subclasses of Petri nets to obtain necessary and sufficient conditions that need less computational cost. These are mainly done using a subset of places called siphons. CS-property, which denotes that every siphon has token(s) in every reachable marking, in one of key properties in liveness analysis. On the other hand, normal Petri net is a subclass of Petri net whose reachability set can be effectively calculated. This paper studies computational complexity of liveness problem of normal Petri nets. First, it is shown that liveness of a normal Petri net is equivalent to cs-property. Then we show this problem is co-NP complete by deriving a nondeterministic algorithm for non-liveness which is similar to the algorithm for liveness suggested by Howell et al. Lastly, we study structural feature of bounded Petri net where liveness and cs-property are equivalent. From this consideration, liveness problem of bounded normal Petri net is shown to be deterministic polynomial time complexity.

  • On the Liveness of Extended Marked Graphs

    Kohkichi TSUJI  Sadatoshi KUMAGAI  Shinzo KODAMA  

     
    PAPER-Mathematics, Combinatorics and Graph Theory

      Vol:
    E69-E No:12
      Page(s):
    1279-1288

    The aim of this paper is to investigate necessary and sufficient conditions for liveness of a class of extended marked graphs (EMG) in terms of the initial token distributions and the net structure. The results can be applied to a large class of EMG which includes the class discussed in Refs. (1) and (7).

  • Necessary and Sufficient Condition of Structural Liveness for General Petri Nets--Virtual Deadlock-Trap Properties--

    Tadashi MATSUMOTO  Ken SAIKUSA  Kohkichi TSUJI  

     
    PAPER-Concurrent Systems

      Vol:
    E78-A No:12
      Page(s):
    1862-1874

    Up to now, the only useful and well-known structural or initial-marking-based necessary and sufficient liveness conditions of Petri nets have only been those of an extended free-choice (EFC) net and its subclasses such as a free-choice (FC) net, a forward conflict free (FCF) net, a marked graph (MG), and a state machine (SM). All the above subclasses are activated only by deadlock-trap properties (i.e., real d-t properties in this paper), which mean that every minimal structural deadlock (MSDL ND=(SD, TD, FD, MoD)) in a net contains at least one live minimal structural trap (MSTR NT=(ST, TT, FT, MoT)) which is initially marked. However, the necessary and sufficient liveness conditions for EFCF, EBCF, EMGEFCFEBCF, AC (EFCFC), and the net with kindling traps NKT have recently been determined, in which each MSDL without real d-t properties was also activated by a new type of trap of trap, i.e., behavioral traps (BTRs), which are defined by introducing a virtual MSTR, a virtual maximal structural trap (virtual STR), a virtual MSDL, and a virtual maximal structural deadlock (virtual SDL) into a target MSDL. In this paper, a structural or initial-marking-based necessary and sufficient condition for local liveness (i.e., virtual deadlock-trap properties) of each MSDL ND s.t. SDST, SDST, SDST (but ND s.t. SDST is dead owing to real deadlock-trap properties) in a general Petri net N is presented by extending that in NKT. Specifically, live minimal behavioral traps (MBTRs) as well as live maximal behavioral traps (BTRs), i.e., virtual deadlock-trap properties, in a general Petri net N are characterized using the real d-t properties of each MSDL ND s.t. SDST for a general Petri net N, which were also obtained by extending the concept of return paths in NKT in connection with an MSDL which contains at least one MSTR and by using the concepts of T-cornucopias and absolute T-cornucopias in a subclass Ñ of N. In other words, BTRs are defined by introducing a virtual MSTR, a virtual STR, a virtual MSDL, and a virtual SDL into a target MSDL without real d-t properties. Additionally, a structural or initial-marking-based necessary and sufficient condition for liveness of a new subclass Nn of a general Petri net N (i.e., a general Petri net without time) is derived, and the usefulness of the obtained results is also discussed.

  • On Liveness of Extended Partially Ordered Condition Nets

    Atsushi OHTA  Kohkichi TSUJI  Tomiji HISAMURA  

     
    LETTER

      Vol:
    E82-A No:11
      Page(s):
    2576-2578

    Petri net is an efficient model for concurrent systems. Liveness is one of analysis properties of Petri net. It concerns with potential fireability of transitions. Many studies have been done on liveness of Petri nets and subclasses are suggested with liveness criteria. In this paper, extended partially ordered condition (EPOC) net is suggested and its liveness is studied. Equivalence of liveness and place-liveness is derived. Analysis using siphon and traps are done. Liveness under the earliest firing rule, where transition must fire as soon as it is enabled, is also studied.

  • Turing Machine Equivalence of Time Asymmetric Choice Nets

    Atsushi OHTA  Kohkichi TSUJI  

     
    LETTER

      Vol:
    E83-A No:11
      Page(s):
    2278-2281

    Petri net is a mathematical model for concurrent systems. Petri net is known to have less modeling power than that of Turing machine. Lack of zero testing ability is the main reason of this fact. Indeed, every extended Petri net model that can perform zero testing is equivalent to Turing machine. Time Petri net is one of the models with ability of zero testing. It is of theoretical interest what structure enables zero testing. This paper shows that time asymmetric choice net can simulate register machines. The result implies reachability problem of this subclass of time Petri net is undecidable.

  • Verifying Structurally Weakly Persistent Net Is Co-NP Complete

    Atsushi OHTA  Kohkichi TSUJI  

     
    LETTER

      Vol:
    E94-A No:12
      Page(s):
    2832-2835

    Petri net is a powerful modeling tool for concurrent systems. Subclasses of Petri net are suggested to model certain realistic applications with less computational cost. Structurally weakly persistent net (SWPN) is one of such subclasses where liveness is verified in deterministic polynomial time. This paper studies the computational complexity to verify whether a give net is SWPN. 3UNSAT problem is reduced to the problem to verify whether a net is not SWPN. This implies co-NP completeness of verification problem of SWPN.

  • An Equivalence Net-Condition between Place-Liveness and Transition -Liveness of Petri Nets and Their Initial-Marking-Based Necessary and Sufficient Liveness Conditions

    Tadashi MATSUMOTO  Kohkichi TSUJI  

     
    PAPER-Graphs, Networks and Matroids

      Vol:
    E77-A No:1
      Page(s):
    291-301

    The structural necessary and sufficient condition for "the transition-liveness means the place-liveness and vice-versa" of a subclass NII of general Petri nets is given as "the place and transition live Petri net, or PTL net, ÑII". Furthermore, "the one-token-condition Petri net, or OTC net, II" which means that every MSDL (minimal structural deadlock) is "transition and place live" under at least one initial token, i.e., II is "transition and place live" under the above initial marking. These subclasses NII, ÑII( NII), and II(ÑII) are almost the general Petri nets except at least one MSTR(minimal structural trap) and at least one pair of "a virtual MSTR or a virtual STR" and "a virtual MSDL" of an MBTR (minimal behavioral trap) in connection with making an MSDL transition-live.

  • Polynomial Time Decidability of Monotone Liveness of Time Bounded AC/DC Nets

    Atsushi OHTA  Kohkichi TSUJI  

     
    PAPER

      Vol:
    E84-A No:11
      Page(s):
    2865-2870

    Petri net is a mathematical model for concurrent systems. Liveness is one of important properties of Petri net. Liveness problem of general Petri net is of exponential space complexity and subclasses are suggested with less computational complexity. It is well known that liveness problem of bounded (extended) free choice net is solved in deterministic polynomial time. This paper treats liveness problem of AC/DC nets. AC/DC net is a subclass of Petri net that exhibits no confusion (mixture of concurrency and conflict). This class properly includes the class of free choice nets. It is shown that every minimal siphon of an AC/DC net is trap if and only if every strongly connected siphon is a trap. This result shows that monotone liveness of bounded AC/DC net is solved in deterministic polynomial time. It is shown that this result is true of bounded time AC/DC net with static fair condition.

  • A Method to Validate the Correctness of Test Logic Programs Applied in a Protocol Conformance Test System Using Petri Nets

    Hiroto SUZUKI  Kohkichi TSUJI  Tetsuo ARAKI  Osamu TAKAHASHI  Shizuo YOSHITAKE  

     
    PAPER

      Vol:
    E77-A No:10
      Page(s):
    1663-1671

    As to the method of multi-layer testing, up to now, the testing system (called PROVES) which testes effectively each N-layer protocol implement of SUT (System Under Test) using the functions of derail-points located between N-layer and (N+1)-layer protocol implements in a test system has been proposed. The test logic programs, which are embedded in the derail-points of the test system, play an important role to realize the protocol error test sequences in the test system. Namely, they modify, add, or delete the correct protocol commands/responses output from the protocol implement part of the lest system, sends these erroneous commands/responses to SUT and observes the output from SUT. This paper proposes the method of validating the correctness of test logic program using the structural properties of Petri nets without coding the test logic programs, where correctness means that the desired output can be obtained by sending or receiving the commands/responses within a constant time under the initial conditions determined uniquely by the test system and SUT. According to our experiment, it is seen that almost all of the logical errors included in the test logic programs used for the experiment can be detected by this method.

  • A Useful Necessary Condition and a Simple Sufficient Condition for Liveness of General Petri Nets

    Tadashi MATSUMOTO  Kohkichi TSUJI  

     
    PAPER

      Vol:
    E74-A No:10
      Page(s):
    3124-3132

    In this paper, the general Petri net liveness problem is discussed. First, a useful necessary condition and a simple sufficient condition for liveness of general Petri nets without time are derived by using only the concept of the deadlocks. Next, it is discussed that the strong motivations, to rebuild the expanded definitions of deadlocks and traps, and to clarify their structural properties and the mutual relationships between deadlocks and traps, result from the main theorems of this paper. It is also shown that the theorems derived in this paper are applied to some timed Petri nets because some timed Petri nets are equivalently transformed into general Petri nets without time by the proposed transformation rule, remaining the basic structural properties such as boundedness, liveness, and reachability of those timed Petri nets unchanged.