The search functionality is under construction.

Author Search Result

[Author] Kohshi OKUMURA(4hit)

1-4hit
  • Bifurcation Phenomena of 1/2-Subharmonic Oscillations in Three-Phase Circuit

    Takashi HISAKADO  Kohshi OKUMURA  

     
    PAPER-Nonlinear Problems

      Vol:
    E82-A No:9
      Page(s):
    1919-1925

    This paper presents the several bifurcation phenomena generated in nonlinear three-phase circuit with symmetry. The circuit consists of delta-connected nonlinear inductors, capacitors and three-phase symmetrical voltage sources. Particular attention is paid to the subharmonic oscillations of order 1/2. We analyze the bifurcations of the oscillations from both theoretical and experimental points. As a tool of analysis, we use the homotopy method. Additionally, by comparing with single-phase and single-phase-like circuits, the special feature of the three-phase circuit is revealed.

  • Bifurcation Phenomena of Harmonic Oscillations in Three-Phase Circuit

    Takashi HISAKADO  Kohshi OKUMURA  

     
    PAPER-Nonlinear Problems

      Vol:
    E80-A No:6
      Page(s):
    1127-1134

    This paper presents the several bifurcation phenomena of harmonic oscillations occurred in nonlinear three-phase circuit. The circuit consists of delta-connected nonlinear inductors, capacitors and three-phase symmetrical voltage sources. We analyze the bifurcations of the oscillations by the homotopy method. Additionally, we confirm the bifurcation phenomena by real experiments. Furthermore, we reveal the effect of nonlinear couplings of inductors by the comparison of harmonic oscillations in a single-phase circuit.

  • Nonexistence of Symmetric Modes of Subharmonic Oscillations in Three-Phase Circuit--An Approach by Interval Computation

    Takashi HISAKADO  Kohshi OKUMURA  

     
    PAPER-Circuit Theory

      Vol:
    E84-A No:12
      Page(s):
    3108-3115

    This paper describes how the symmetry of a three-phase circuit prevents the symmetric modes of several subharmonic oscillations. First, we make mathematically it clear that the generation of symmetrical 1/3l-subharmonic oscillations (l=1,2,) are impossible in the three-phase circuit. As far as 1/(3l+1)-subharmonic oscillations (l=1,2,) and 1/(3l+2)-subharmonic oscillations (l=0,1,) are concerned, the former in negative-phase sequence and the latter in positive-phase sequence are shown to be impossible. Further, in order to confirm the above results, we apply the method of interval analysis to the circuit equations and obtain all steady state solutions with unsymmetric modes.

  • An Algebraic Approach to Guarantee Harmonic Balance Method Using Grobner Base

    Masakazu YAGI  Takashi HISAKADO  Kohshi OKUMURA  

     
    PAPER-Analysis, Modelng and Simulation

      Vol:
    E91-A No:9
      Page(s):
    2442-2449

    Harmonic balance (HB) method is well known principle for analyzing periodic oscillations on nonlinear networks and systems. Because the HB method has a truncation error, approximated solutions have been guaranteed by error bounds. However, its numerical computation is very time-consuming compared with solving the HB equation. This paper proposes an algebraic representation of the error bound using Grobner base. The algebraic representation enables to decrease the computational cost of the error bound considerably. Moreover, using singular points of the algebraic representation, we can obtain accurate break points of the error bound by collisions.