The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Koichi MOURI(2hit)

1-2hit
  • Performance Comparison of Training Datasets for System Call-Based Malware Detection with Thread Information

    Yuki KAJIWARA  Junjun ZHENG  Koichi MOURI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/09/21
      Vol:
    E104-D No:12
      Page(s):
    2173-2183

    The number of malware, including variants and new types, is dramatically increasing over the years, posing one of the greatest cybersecurity threats nowadays. To counteract such security threats, it is crucial to detect malware accurately and early enough. The recent advances in machine learning technology have brought increasing interest in malware detection. A number of research studies have been conducted in the field. It is well known that malware detection accuracy largely depends on the training dataset used. Creating a suitable training dataset for efficient malware detection is thus crucial. Different works usually use their own dataset; therefore, a dataset is only effective for one detection method, and strictly comparing several methods using a common training dataset is difficult. In this paper, we focus on how to create a training dataset for efficiently detecting malware. To achieve our goal, the first step is to clarify the information that can accurately characterize malware. This paper concentrates on threads, by treating them as important information for characterizing malware. Specifically, on the basis of the dynamic analysis log from the Alkanet, a system call tracer, we obtain the thread information and classify the thread information processing into four patterns. Then the malware detection is performed using the number of transitions of system calls appearing in the thread as a feature. Our comparative experimental results showed that the primary thread information is important and useful for detecting malware with high accuracy.

  • Firewall Traversal Method by Pseudo-TCP Encapsulation

    Keigo TAGA  Junjun ZHENG  Koichi MOURI  Shoichi SAITO  Eiji TAKIMOTO  

     
    PAPER-Information Network

      Pubricized:
    2021/09/29
      Vol:
    E105-D No:1
      Page(s):
    105-115

    A wide range of communication protocols has recently been developed to address service diversification. At the same time, firewalls (FWs) are installed at the boundaries between internal networks, such as those owned by companies and homes, and the Internet. In general, FWs are configured as whitelists and release only the port corresponding to the service to be used and block communication from other ports. In a previous study, we proposed a method for traversing a FW and enabling communication by inserting a pseudo-transmission control protocol (TCP) header imitating HTTPS into a packet, which normally would be blocked by the FW. In that study, we confirmed the efficiency of the proposed method via its implementation and experiments. Even though common encapsulating techniques work on end-nodes, the previous implementation worked on the relay node assuming a router. Further, middleboxes, which overwrite L3 and L4 headers on the Internet, need to be taken into consideration. Accordingly, we re-implemented the proposed method into an end-node and added a feature countering a typical middlebox, i.e., NAPT, into our implementation. In this paper, we describe the functional confirmation and performance evaluations of both versions of the proposed method.