The search functionality is under construction.

Author Search Result

[Author] Koji TAKASAKI(2hit)

1-2hit
  • Response of a Superconducting Transition-Edge Sensor Microcalorimeter with a Mushroom-shaped Absorber to L X-rays Emitted by Transuranium Elements Open Access

    Keisuke MAEHATA  Makoto MAEDA  Naoko IYOMOTO  Kenji ISHIBASHI  Keisuke NAKAMURA  Katsunori AOKI  Koji TAKASAKI  Kazuhisa MITSUDA  Keiichi TANAKA  

     
    INVITED PAPER

      Vol:
    E98-C No:3
      Page(s):
    178-185

    A four-pixel-array superconducting transition-edge sensor (TES) microcalorimeter with a mushroom-shaped absorber was fabricated for the energy dispersive spectroscopy performed on a transmission electron microscope. The TES consists of a bilayer of Au/Ti with either a 50-nm or 120-nm thickness. The absorber of 5.0,$mu$m thick is made from a Au layer and its stem is deposited in the center of the TES surface. A Ta$_{2}$O$_{5}$ insulating layer of 100-nm thickness is inserted between the overhang region of the absorber and the TES surface. A selected pixel of the TES microcalorimeter was operated for the detection of Np L X-rays emitted from an $^{241}$Am source. A response of the TES microcalorimeter to L X-rays was obtained by analyzing detection signal pulses with using the optimal filter method. An energy resolution was obtained to be 33,eV of the full width at half maximum value at 17.751,keV of Np L$_{eta 1}$ considering its natural width of 13.4,eV. Response to L X-rays emitted from a mixture source of $^{238}$Pu, $^{239}$Pu and $^{241}$Am was obtained by operating the selected pixel of the TES microcalorimeter. Major L X-ray peaks of progeny elements of $alpha$ decay of Pu and Am isotopes were clearly identified in the obtained energy spectrum. The experimental results demonstrated the separation of $^{241}$Am and plutonium isotopes by L X-ray spectroscopy.

  • Superconducting Transition Edge Sensor for Gamma-Ray Spectroscopy Open Access

    Masashi OHNO  Tomoya IRIMATSUGAWA  Hiroyuki TAKAHASHI  Chiko OTANI  Takashi YASUMUNE  Koji TAKASAKI  Chikara ITO  Takashi OHNISHI  Shin-ichi KOYAMA  Shuichi HATAKEYAMA  R.M. Thushara. DAMAYANTHI  

     
    INVITED PAPER

      Vol:
    E100-C No:3
      Page(s):
    283-290

    Superconducting Transition edge sensor (TES) coupled with a heavy metal absorber is a promising microcalorimeter for Gamma-ray (γ-ray) spectroscopy with ultra-high energy resolution and high detection efficiency. It is very useful for the non-destructed inspection of the nuclide materials. High resolving power of γ-ray peaks can precisely identify multiple nuclides such as Plutonium (Pu) and Actinides with high efficiency and safety. For this purpose, we have developed the TES coupled with a tin absorber. We suggest the new device structure using the gold bump post which connects a tin absorber to the thermometer of the superconducting Ir/Au bilayer. High thermal conductivity of the gold bump post realized strong thermal coupling between the thermometer and the γ-ray absorber, and it brought the benefit of large pulse height and fast decay time. Our TES achieved the good energy resolution of 84 eV FWHM at 59.5 keV. Using this TES device, we also succeeded to demonstrate the nuclear material measurements. In the measurement of a Pu sample, we detected the sharp γ-ray peaks from 239Pu and 240Pu, and of a Fission Products (FP) sample, we observed fluorescence X-ray peaks emitted by the elements contained in FP. The TES could resolve the fine structures of each fluorescence X-ray line like Kα1 and Kα2. In addition to that, we developed the TES coupled with tantalum absorber, which is expected to have higher absorption efficiency for γ-rays. This device reported the best energy resolution of 465 eV at 662 keV.