The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Koki IGAWA(2hit)

1-2hit
  • A Floorplan Aware High-Level Synthesis Algorithm with Body Biasing for Delay Variation Compensation

    Koki IGAWA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER

      Vol:
    E100-A No:7
      Page(s):
    1439-1451

    In this paper, we propose a floorplan aware high-level synthesis algorithm with body biasing for delay variation compensation, which minimizes the average leakage energy of manufactured chips. In order to realize floorplan-aware high-level synthesis, we utilize huddle-based distributed register architecture (HDR architecture). HDR architecture divides the chip area into small partitions called a huddle and we can control a body bias voltage for every huddle. During high-level synthesis, we iteratively obtain expected leakage energy for every huddle when applying a body bias voltage. A huddle with smaller expected leakage energy contributes to reducing expected leakage energy of the entire circuit more but can increase the latency. We assign control-data flow graph (CDFG) nodes in non-critical paths to the huddles with larger expected leakage energy and those in critical paths to the huddles with smaller expected leakage energy. We expect to minimize the entire leakage energy in a manufactured chip without increasing its latency. Experimental results show that our algorithm reduces the average leakage energy by up to 39.7% without latency and yield degradation compared with typical-case design with body biasing.

  • A Multi-Scenario High-Level Synthesis Algorithm for Variation-Tolerant Floorplan-Driven Design

    Koki IGAWA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER

      Vol:
    E99-A No:7
      Page(s):
    1278-1293

    In order to tackle a process-variation problem, we can define several scenarios, each of which corresponds to a particular LSI behavior, such as a typical-case scenario and a worst-case scenario. By designing a single LSI chip which realizes multiple scenarios simultaneously, we can have a process-variation-tolerant LSI chip. In this paper, we propose a multi-scenario high-level synthesis algorithm for variation-tolerant floorplan-driven design targeting new distributed-register architectures, called HDR architectures. We assume two scenarios, a typical-case scenario and a worst-case scenario, and realize them onto a single chip. We first schedule/bind each of the scenarios independently. After that, we commonize the scheduling/binding results for the typical-case and worst-case scenarios and thus generate a commonized area-minimized floorplan result. At that time, we can explicitly take into account interconnection delays by using distributed-register architectures. Experimental results show that our algorithm reduces the latency of the typical-case scenario by up to 50% without increasing the latency of the worst-case scenario, compared with several existing methods.