The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Kosuke OMURA(2hit)

1-2hit
  • Performance Evaluation of Bluetooth Low Energy Positioning Systems When Using Sparse Training Data

    Tetsuya MANABE  Kosuke OMURA  

     
    PAPER

      Pubricized:
    2021/11/01
      Vol:
    E105-A No:5
      Page(s):
    778-786

    This paper evaluates the bluetooth low energy (BLE) positioning systems using the sparse-training data through the comparison experiments. The sparse-training data is extracted from the database including enough data for realizing the highly accurate and precise positioning. First, we define the sparse-training data, i.e., the data collection time and the number of smartphones, directions, beacons, and reference points, on BLE positioning systems. Next, the positioning performance evaluation experiments are conducted in two indoor environments, that is, an indoor corridor as a one-dimensionally spread environment and a hall as a twodimensionally spread environment. The algorithms for comparison are the conventional fingerprint algorithm and the hybrid algorithm (the authors already proposed, and combined the proximity algorithm and the fingerprint algorithm). Based on the results, we confirm that the hybrid algorithm performs well in many cases even when using sparse-training data. Consequently, the robustness of the hybrid algorithm, that the authors already proposed for the sparse-training data, is shown.

  • Performance Evaluation Using Plural Smartphones in Bluetooth Low Energy Positioning System

    Kosuke OMURA  Tetsuya MANABE  

     
    LETTER

      Vol:
    E104-A No:2
      Page(s):
    371-374

    In this paper, we clarify the importance of performance evaluation using a plurality of smartphones in a positioning system based on radio waves. Specifically, in a positioning system using bluetooth low energy, the positioning performance of two types of positioning algorithms is performed using a plurality of smartphones. As a result, we confirmed that the fingerprint algorithm does not always provide sufficient positioning performance. It depends on the model of the smartphone used. On the other hand, the hybrid algorithm that the authors have already proposed is robust in the difference of the received signal characteristics of the smartphone. Consequently, we spotlighted that the use of multiple devices is essential for providing high-quality location-based services in real environments in the performance evaluation of radio wave-based positioning systems using smartphones.