The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Kunjie YU(1hit)

1-1hit
  • A Novel Differential Evolution Algorithm Based on Local Fitness Landscape Information for Optimization Problems

    Jing LIANG  Ke LI  Kunjie YU  Caitong YUE  Yaxin LI  Hui SONG  

     
    PAPER-Core Methods

      Pubricized:
    2023/02/13
      Vol:
    E106-D No:5
      Page(s):
    601-616

    The selection of mutation strategy greatly affects the performance of differential evolution algorithm (DE). For different types of optimization problems, different mutation strategies should be selected. How to choose a suitable mutation strategy for different problems is a challenging task. To deal with this challenge, this paper proposes a novel DE algorithm based on local fitness landscape, called FLIDE. In the proposed method, fitness landscape information is obtained to guide the selection of mutation operators. In this way, different problems can be solved with proper evolutionary mechanisms. Moreover, a population adjustment method is used to balance the search ability and population diversity. On one hand, the diversity of the population in the early stage is enhanced with a relative large population. One the other hand, the computational cost is reduced in the later stage with a relative small population. The evolutionary information is utilized as much as possible to guide the search direction. The proposed method is compared with five popular algorithms on 30 test functions with different characteristics. Experimental results show that the proposed FLIDE is more effective on problems with high dimensions.