1-2hit |
Kwanho KIM Josué OBREGON Jae-Yoon JUNG
As the recent growth of online social network services such as Facebook and Twitter, people are able to easily share information with each other by writing posts or commenting for another's posts. In this paper, we firstly suggest a method of discovering information flows of posts on Facebook and their underlying contexts by incorporating process mining and text mining techniques. Based on comments collected from Facebook, the experiment results illustrate how the proposed method can be applied to analyze information flows and contexts of posts on social network services.
Kwanho KIM Jae-Yoon JUNG Jonghun PARK
Information diffusion analysis in social networks is of significance since it enables us to deeply understand dynamic social interactions among users. In this paper, we introduce approaches to discovering information diffusion process in social networks based on process mining. Process mining techniques are applied from three perspectives: social network analysis, process discovery and community recognition. We then present experimental results by using a real-life social network data. The proposed techniques are expected to employ as new analytical tools in online social networks such as blog and wikis for company marketers, politicians, news reporters and online writers.