1-2hit |
Kyung-Jin YOU Ha-Eun JEON Hyun-Chool SHIN
In this paper, we proposed a method for radar modulation identification based on the measurement of inequality in the frequency domain. Gini's coefficient was used to exploit the inequality in the powers of spectral components. The maximum likelihood classifier was used to classify the detected radar signal into four types of modulations: unmodulated signal (UM), linear frequency modulation (LFM), non-linear frequency modulation (NLFM), and frequency shift keying (FSK). The simulation results demonstrated that the proposed method achieves an overall identification accuracy of 98.61% at a signal-to-noise ratio (SNR) of -6dB without a priori information such as carrier frequency, pulse arrival times or pulse width.
Heemang SONG Seunghoon CHO Kyung-Jin YOU Hyun-Chool SHIN
In this paper, we propose an automotive radar sensor compensation method improving direction of arrival (DOA) and preventing target split tracking. Amplitude and phase mismatching and mutual coupling between radar sensor arrays cause an inaccuracy problem in DOA estimation. By quantifying amplitude and phase distortion levels for each angle, we compensate the sensor distortion. Applying the proposed method to Bartlett, Capon and multiple signal classification (MUSIC) algorithms, we experimentally demonstrate the performance improvement using both experimental data from the chamber and real data obtained in actual road.