The search functionality is under construction.

Author Search Result

[Author] Kyung-Kuk LEE(2hit)

1-2hit
  • New Structures of Packet/Frame Synchronizer for MB-OFDM UWB

    Heon-Uk LEE  Sang-Hun YOON  Kyung-Kuk LEE  Jong-Wha CHONG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E89-A No:3
      Page(s):
    830-831

    In this letter, we suggest two new efficient hardware structures of correlators for packet and frame synchronization of MB-OFDM UWB. In the proposed structure 1, we suggest a hierarchical structure composed of 8 and 16 tap sub-correlators instead of ordinary 128 tap correlators. In the proposed structure 2, we suggest a structure which uses quantized coefficients and simplified multipliers. Results of simulations indicates that the hardware complexities of proposed structures are reduced to about 54% and 31% with minor performance loss, compared with a conventional method.

  • New Code Set for DS-UWB

    Sang-Hun YOON  Daegun OH  Jong-Wha CHONG  Kyung-Kuk LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:12
      Page(s):
    3721-3723

    In this paper, we propose a new code set which has very low spectral peak to average ratio (SPAR) and good correlation properties for DS-UWB. The codes which have low SPAR are suitable for DS-UWB system which operates in UWB (3.110.4 GHz) because they can utilize more power than high SPAR codes can do. And, in order to reduce inter symbol interference (ISI) and inter piconet interferences, the codes which have good auto- and cross-correlation properties must be used. In this paper, we propose three items; (1) a new code generation method which can generate good SPAR and auto-correlation codes, (2) code selection criteria, and (3) a code set, which has been selected according to the proposed selection criteria. The proposed code set has SPAR reduced about 0.22 dB and GMF improved by 30% compared to the previous code set while it is maintaining almost same cross-correlation properties. Each code of the proposed code set, therefore, has gained 1.43 dB SIR on an average compared to that of the previous code set.