1-2hit |
Bongsub SONG Kyunghoon KIM Junan LEE Kwangsoo KIM Younglok KIM Jinwook BURM
A complete 4-level pulse amplitude modulation (4-PAM) serial link transceiver including a wide frequency range clock generator and clock data recovery (CDR) is proposed in this paper. A dual-loop architecture, consisting of a frequency locked loop (FLL) and a phase locked loop (PLL), is employed for the wide frequency range clocks. The generated clocks from the FLL (clock generator) and the PLL (CDR) are utilized for a transmitter clock and a receiver clock, respectively. Both FLL and PLL employ the identical voltage controlled oscillators consisting of ring-type delay-cells. To improve the frequency tuning range of the VCO, deep triode PMOS loads are utilized for each delay-cell, since the turn-on resistance of the deep triode PMOS varies substantially by the gate-voltage. As a result, fabricated in a 0.13-µm CMOS process, the proposed 4-PAM transceiver operates from 1.5 Gb/s to 9.7 Gb/s with a bit error rate of 10-12. At the maximum data-rate, the entire power dissipation of the transceiver is 254 mW, and the measured jitter of the recovered clock is 1.61 psrms.
Daeho YUN Bongsub SONG Kyunghoon KIM Junan LEE Jinwook BURM
A low-power switching method using a bootstrapping circuit is proposed for a high-speed output driver of transmitter. Compared with a conventional output driver, the proposed scheme employs only nMOSFETs to transmit data. The bootstrapping circuit ensures the proper switching of nMOSFET. The proposed scheme is simulated and fabricated using a 0.18 µm CMOS technology, showing 10.2% lower power consumption than a conventional switching driver at 2.5 Gb/s data rate.