The search functionality is under construction.

Author Search Result

[Author] Li-Ta HSU(4hit)

1-4hit
  • Accurate Estimation of Pedestrian Orientation from On-Board Camera and Inertial Sensors

    Yanlei GU  Li-Ta HSU  Lijia XIE  Shunsuke KAMIJO  

     
    PAPER

      Vol:
    E99-A No:1
      Page(s):
    271-281

    Autonomous driving is not only required to detect pedestrians around vehicles, but also expected to understand the behaviors of pedestrians. Pedestrian body orientation and head orientation are the relevant indicators of the pedestrian intention. This paper proposes an accurate estimation system to recognize the pedestrian body orientation and the pedestrian head orientation from on-board camera and inertial sensors. The proposed system discretizes the body orientation and the head orientation into 16 directions. In order to achieve the accurate orientation estimation, a novel training database is established, which includes strongly labeled data and weakly labeled data. Semi-Supervised Learning method is employed to annotate the weakly labeled data, and to generate the accurate classifier based on the proposed training database. In addition, the temporal constraint and the human physical model constraint are considered in orientation estimation, which are beneficial to the reasonable and stable result of orientation estimation for the pedestrian in image sequences. This estimated result is the orientation in camera space. The comprehension of the pedestrian behavior needs to be conducted in the real world space. Therefore, this paper proposes to model the motion of the host vehicle using inertial sensor, then transforms the estimated orientation from camera space to the real world space by considering the vehicle and pedestrian motion. The represented orientation indicates the behavior of the pedestrian more directly. Finally, a series of experiments demonstrate the effectiveness of the proposed pedestrian orientation system.

  • Database Calibration for Outdoor Wi-Fi Positioning System

    Yuyang HUANG  Li-Ta HSU  Yanlei GU  Haitao WANG  Shunsuke KAMIJO  

     
    PAPER-Intelligent Transport System

      Vol:
    E99-A No:9
      Page(s):
    1683-1690

    The limitation of the GPS in urban canyon has led to the rapid development of Wi-Fi positioning system (WPS). The fingerprint-based WPS could be divided into calibration and positioning stages. In calibration stage, several grid points (GPs) are selected, and their position tags and featured access points (APs) are collected to build fingerprint database. In positioning stage, real time measurement of APs are compared with the feature of each GP in the database. The k weighted nearest neighbors (KWNN) algorithm is used as pattern matching algorithm to estimate the final positioning result. However, the performance of outdoor fingerprint-based WPS is not good enough for pedestrian navigation. The main challenge is to build a robust fingerprint database. The received number of APs in outdoor environments has large variation. In addition, positioning result estimated by GPS receiver is used as position tag of each GP to automatically build the fingerprint database. This paper studies the lifecycle of fingerprint database in outdoor environment. We also shows that using long time collected data to build database could improve the positioning accuracy. Moreover, a new 3D-GNSS (3D building models aided GNSS) positioning method is used to provide accurate position tags. In this paper, the fingerprint-based WPS has been developed in an outdoor environment near the center of Tokyo city. The proposed WPS can achieve around 17 meters positioning accuracy in urban canyon.

  • GNSS Correction Using Altitude Map and Its Integration with Pedestrian Dead Reckoning

    Yuyang HUANG  Li-Ta HSU  Yanlei GU  Shunsuke KAMIJO  

     
    PAPER-Intelligent Transport System

      Vol:
    E101-A No:8
      Page(s):
    1245-1256

    Accurate pedestrian navigation remains a challenge in urban environments. GNSS receiver behaves poorly because the reflection and blockage of the GNSS signals by buildings or other obstacles. Integration of GNSS positioning and Pedestrian Dead Reckoning (PDR) could provide a more smooth navigation trajectory. However, the integration system cannot present the satisfied performance if GNSS positioning has large error. This situation often happens in the urban scenario. This paper focuses on improving the accuracy of the pedestrian navigation in urban environment using a proposed altitude map aided GNSS positioning method. Firstly, we use consistency check algorithm, which is similar to receiver autonomous integrity monitoring (RAIM) fault detection, to distinguish healthy and multipath contaminated measurements. Afterwards, the erroneous signals are corrected with the help of an altitude map. We called the proposed method altitude map aided GNSS. After correcting the erroneous satellite signals, the positioning mean error could be reduced from 17 meters to 12 meters. Usually, good performance for integration system needs accurately calculated GNSS accuracy value. However, the conventional GNSS accuracy calculation is not reliable in urban canyon. In this paper, the altitude map is also utilized to calculate the GNSS localization accuracy in order to indicate the reliability of the estimated position solution. The altitude map aided GNSS and accuracy are used in the integration with PDR system in order to provide more accurate and continuous positioning results. With the help of the proposed GNSS accuracy, the integration system could achieve 6.5 meters horizontal positioning accuracy in urban environment.

  • Evaluation of Multi-GNSSs and GPS with 3D Map Methods for Pedestrian Positioning in an Urban Canyon Environment

    Li-Ta HSU  Feiyu CHEN  Shunsuke KAMIJO  

     
    PAPER

      Vol:
    E98-A No:1
      Page(s):
    284-293

    Highly accurate pedestrian position information is required in many applications, especially in automatic driving system. Global Positioning System (GPS) developed by American has proven itself reliability in most of the environments. Unfortunately, urban areas contain the signal reflection, known as multipath and non-line-of-sight (NLOS) effects. In addition, the lake of line-of-sight (LOS) satellites caused by the blockage of skyscrapers also severely degrades the accuracy and availability of the GPS positioning. To solve these problems, a solution that interoperated several Global Navigation Satellite Systems (GNSSs) is proposed. However, the actual difficulty of satellite positioning in urban area is the distorted satellite distribution. This paper proposes a GPS with 3D map ray tracing positioning method to conquer the difficulty. The proposed method takes the advantage of the non-LOS (NLOS) and uses it as an additional measurement. Significantly, these measurements are sourced from the satellites that should be blocked. Thus, the dilution of precision (DOP) can be greatly improved. To verify the performance of the proposed method, real data is collected at Tokyo urban area. This paper compares the performance of GPS/GLONASS and the proposed GPS with 3D map ray tracing methods. The results reveals the proposed method is capable of identifying which side of street the pedestrian stands and the GPS+GLONASS method is not.