The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Linjun SUN(2hit)

1-2hit
  • LGCN: Learnable Gabor Convolution Network for Human Gender Recognition in the Wild Open Access

    Peng CHEN  Weijun LI  Linjun SUN  Xin NING  Lina YU  Liping ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/06/13
      Vol:
    E102-D No:10
      Page(s):
    2067-2071

    Human gender recognition in the wild is a challenging task due to complex face variations, such as poses, lighting, occlusions, etc. In this letter, learnable Gabor convolutional network (LGCN), a new neural network computing framework for gender recognition was proposed. In LGCN, a learnable Gabor filter (LGF) is introduced and combined with the convolutional neural network (CNN). Specifically, the proposed framework is constructed by replacing some first layer convolutional kernels of a standard CNN with LGFs. Here, LGFs learn intrinsic parameters by using standard back propagation method, so that the values of those parameters are no longer fixed by experience as traditional methods, but can be modified by self-learning automatically. In addition, the performance of LGCN in gender recognition is further improved by applying a proposed feature combination strategy. The experimental results demonstrate that, compared to the standard CNNs with identical network architecture, our approach achieves better performance on three challenging public datasets without introducing any sacrifice in parameter size.

  • Gradient-Enhanced Softmax for Face Recognition

    Linjun SUN  Weijun LI  Xin NING  Liping ZHANG  Xiaoli DONG  Wei HE  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/02/07
      Vol:
    E103-D No:5
      Page(s):
    1185-1189

    This letter proposes a gradient-enhanced softmax supervisor for face recognition (FR) based on a deep convolutional neural network (DCNN). The proposed supervisor conducts the constant-normalized cosine to obtain the score for each class using a combination of the intra-class score and the soft maximum of the inter-class scores as the objective function. This mitigates the vanishing gradient problem in the conventional softmax classifier. The experiments on the public Labeled Faces in the Wild (LFW) database denote that the proposed supervisor achieves better results when compared with those achieved using the current state-of-the-art softmax-based approaches for FR.