The search functionality is under construction.

Author Search Result

[Author] Longbiao WANG(3hit)

1-3hit
  • Speaker Recognition by Combining MFCC and Phase Information in Noisy Conditions

    Longbiao WANG  Kazue MINAMI  Kazumasa YAMAMOTO  Seiichi NAKAGAWA  

     
    PAPER-Speaker Recognition

      Vol:
    E93-D No:9
      Page(s):
    2397-2406

    In this paper, we investigate the effectiveness of phase for speaker recognition in noisy conditions and combine the phase information with mel-frequency cepstral coefficients (MFCCs). To date, almost speaker recognition methods are based on MFCCs even in noisy conditions. For MFCCs which dominantly capture vocal tract information, only the magnitude of the Fourier Transform of time-domain speech frames is used and phase information has been ignored. High complement of the phase information and MFCCs is expected because the phase information includes rich voice source information. Furthermore, some researches have reported that phase based feature was robust to noise. In our previous study, a phase information extraction method that normalizes the change variation in the phase depending on the clipping position of the input speech was proposed, and the performance of the combination of the phase information and MFCCs was remarkably better than that of MFCCs. In this paper, we evaluate the robustness of the proposed phase information for speaker identification in noisy conditions. Spectral subtraction, a method skipping frames with low energy/Signal-to-Noise (SN) and noisy speech training models are used to analyze the effect of the phase information and MFCCs in noisy conditions. The NTT database and the JNAS (Japanese Newspaper Article Sentences) database added with stationary/non-stationary noise were used to evaluate our proposed method. MFCCs outperformed the phase information for clean speech. On the other hand, the degradation of the phase information was significantly smaller than that of MFCCs for noisy speech. The individual result of the phase information was even better than that of MFCCs in many cases by clean speech training models. By deleting unreliable frames (frames having low energy/SN), the speaker identification performance was improved significantly. By integrating the phase information with MFCCs, the speaker identification error reduction rate was about 30%-60% compared with the standard MFCC-based method.

  • Robust Speech Recognition by Combining Short-Term and Long-Term Spectrum Based Position-Dependent CMN with Conventional CMN

    Longbiao WANG  Seiichi NAKAGAWA  Norihide KITAOKA  

     
    PAPER-ASR under Reverberant Conditions

      Vol:
    E91-D No:3
      Page(s):
    457-466

    In a distant-talking environment, the length of channel impulse response is longer than the short-term spectral analysis window. Conventional short-term spectrum based Cepstral Mean Normalization (CMN) is therefore, not effective under these conditions. In this paper, we propose a robust speech recognition method by combining a short-term spectrum based CMN with a long-term one. We assume that a static speech segment (such as a vowel, for example) affected by reverberation, can be modeled by a long-term cepstral analysis. Thus, the effect of long reverberation on a static speech segment may be compensated by the long-term spectrum based CMN. The cepstral distance of neighboring frames is used to discriminate the static speech segment (long-term spectrum) and the non-static speech segment (short-term spectrum). The cepstra of the static and non-static speech segments are normalized by the corresponding cepstral means. In a previous study, we proposed an environmentally robust speech recognition method based on Position-Dependent CMN (PDCMN) to compensate for channel distortion depending on speaker position, and which is more efficient than conventional CMN. In this paper, the concept of combining short-term and long-term spectrum based CMN is extended to PDCMN. We call this Variable Term spectrum based PDCMN (VT-PDCMN). Since PDCMN/VT-PDCMN cannot normalize speaker variations because a position-dependent cepstral mean contains the average speaker characteristics over all speakers, we also combine PDCMN/VT-PDCMN with conventional CMN in this study. We conducted the experiments based on our proposed method using limited vocabulary (100 words) distant-talking isolated word recognition in a real environment. The proposed method achieved a relative error reduction rate of 60.9% over the conventional short-term spectrum based CMN and 30.6% over the short-term spectrum based PDCMN.

  • Distant-Talking Speech Recognition Based on Spectral Subtraction by Multi-Channel LMS Algorithm

    Longbiao WANG  Norihide KITAOKA  Seiichi NAKAGAWA  

     
    PAPER-Speech and Hearing

      Vol:
    E94-D No:3
      Page(s):
    659-667

    We propose a blind dereverberation method based on spectral subtraction using a multi-channel least mean squares (MCLMS) algorithm for distant-talking speech recognition. In a distant-talking environment, the channel impulse response is longer than the short-term spectral analysis window. By treating the late reverberation as additive noise, a noise reduction technique based on spectral subtraction was proposed to estimate the power spectrum of the clean speech using power spectra of the distorted speech and the unknown impulse responses. To estimate the power spectra of the impulse responses, a variable step-size unconstrained MCLMS (VSS-UMCLMS) algorithm for identifying the impulse responses in a time domain is extended to a frequency domain. To reduce the effect of the estimation error of the channel impulse response, we normalize the early reverberation by cepstral mean normalization (CMN) instead of spectral subtraction using the estimated impulse response. Furthermore, our proposed method is combined with conventional delay-and-sum beamforming. We conducted recognition experiments on a distorted speech signal simulated by convolving multi-channel impulse responses with clean speech. The proposed method achieved a relative error reduction rate of 22.4% in relation to conventional CMN. By combining the proposed method with beamforming, a relative error reduction rate of 24.5% in relation to the conventional CMN with beamforming was achieved using only an isolated word (with duration of about 0.6 s) to estimate the spectrum of the impulse response.