1-4hit |
Yu ZHOU Leida LI Ke GU Zhaolin LU Beijing CHEN Lu TANG
Depth-image-based-rendering (DIBR) is a popular technique for view synthesis. The rendering process mainly introduces artifacts around edges, which leads to degraded quality. This letter proposes a DIBR-synthesized image quality metric by measuring the Statistics of both Edge Intensity and Orientation (SEIO). The Canny operator is first used to detect edges. Then the gradient maps are calculated, based on which the intensity and orientation of the edge pixels are computed for both the reference and synthesized images. The distance between the two intensity histograms and that between the two orientation histograms are computed. Finally, the two distances are pooled to obtain the overall quality score. Experimental results demonstrate the advantages of the presented method.
Lu TANG Zhigong WANG Tiantian FAN Faen LIU Changchun ZHANG
In this paper, an improved charge pump (CP) and a modified nonlinear phase frequency detector (PFD) are designed and fabricated in a 90-nm CMOS process. The CP is optimized with a combination of circuit techniques such as pedestal error cancel scheme to eliminate the charge injection and the other non-ideal characteristics. The nonlinear PFD is based on a modified circuit topology to enhance the acquisition capability of the PLL. The optimized CP and nonlinear PFD are integrated into a Ka-band PLL. The measured output current mismatch ratio of the improved CP is less than 1% when the output voltage Vout fluctuates between 0.2 to 1.1V from a 1.2V power supply. The measured phase error detection range of the modified nonlinear PFD is between -2π and 2π. Owing to the modified CP and PFD, the measured reference spur of the Ka-band PLL frequency synthesizer containing the optimized CP and PFD is only -56.409dBc at 30-GHz at the locked state.
Xingge GUO Liping HUANG Ke GU Leida LI Zhili ZHOU Lu TANG
The quality assessment of screen content images (SCIs) has been attractive recently. Different from natural images, SCI is usually a mixture of picture and text. Traditional quality metrics are mainly designed for natural images, which do not fit well into the SCIs. Motivated by this, this letter presents a simple and effective method to naturalize SCIs, so that the traditional quality models can be applied for SCI quality prediction. Specifically, bicubic interpolation-based up-sampling is proposed to achieve this goal. Extensive experiments and comparisons demonstrate the effectiveness of the proposed method.
Fei YU Lu TANG Luxi YANG Changchun ZHANG Weiping ZHU
In this paper, we address the issue of interference alignment (IA) in a two-cell network and consider both inter-cell and intra-cell interferences. For cell one, a linear processing scheme is proposed to align the inter-cell interference to the same signal dimension space of intra-cell interference. For cell two, we propose a distributed interference alignment scheme to manage the interference from the nearby cell. We assume that the relay works in an amplify-and-forward (AF) mode with a half-duplex and MIMO relaying. We show that the composite desired and interfering signals aggregated over two time slots can be aligned such that the interfering signal is eliminated completely by applying a linear filter at the receiver. The precoding matrix of the relay is optimized jointly with the precoding matrix of the base station (BS). The number of data streams is optimized jointly for every user terminal (UT). The degree of freedom (DoF) performance of the proposed scheme as well as the conventional cooperation scheme are derived for multiple antennas at both base stations, relay station and user terminals. Simulation results show that the proposed alignment scheme can achieve a better DoF performance.