1-1hit |
Zhangjie FU Xingming SUN Qi LIU Lu ZHOU Jiangang SHU
Cloud computing is becoming increasingly popular. A large number of data are outsourced to the cloud by data owners motivated to access the large-scale computing resources and economic savings. To protect data privacy, the sensitive data should be encrypted by the data owner before outsourcing, which makes the traditional and efficient plaintext keyword search technique useless. So how to design an efficient, in the two aspects of accuracy and efficiency, searchable encryption scheme over encrypted cloud data is a very challenging task. In this paper, for the first time, we propose a practical, efficient, and flexible searchable encryption scheme which supports both multi-keyword ranked search and parallel search. To support multi-keyword search and result relevance ranking, we adopt Vector Space Model (VSM) to build the searchable index to achieve accurate search results. To improve search efficiency, we design a tree-based index structure which supports parallel search to take advantage of the powerful computing capacity and resources of the cloud server. With our designed parallel search algorithm, the search efficiency is well improved. We propose two secure searchable encryption schemes to meet different privacy requirements in two threat models. Extensive experiments on the real-world dataset validate our analysis and show that our proposed solution is very efficient and effective in supporting multi-keyword ranked parallel searches.