The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Mabel VAZQUEZ-BRISENO(2hit)

1-2hit
  • Cognition-Based Delay Analysis to Determine the Average Minimum Time Limit for Wireless Sensor Communications

    Kedir MAMO BESHER  Juan-Ivan NIETO-HIPÓLITO  Juan de Dios SÁNCHEZ LÓPEZ  Mabel VAZQUEZ-BRISENO  Raymundo BUENROSTRO MARISCAL  

     
    PAPER

      Pubricized:
    2019/12/26
      Vol:
    E103-D No:4
      Page(s):
    789-795

    End-to-end delay, aiming to realize how much time it will take for a traffic load generated by a Mobile Node (MN) to reach Sink Node (SN), is a principal objective of most new trends in a Wireless Sensor Network (WSN). It has a direct link towards understanding the minimum time delay expected where the packet sent by MN can take to be received by SN. Most importantly, knowing the average minimum transmission time limit is a crucial piece of information in determining the future output of the network and the kind of technologies implemented. In this paper, we take network load and transmission delay issues into account in estimating the Average Minimum Time Limit (AMTL) needed for a health operating cognitive WSN. To further estimate the AMTL based on network load, an end-to-end delay analysis mechanism is presented and considers the total delay (service, queue, ACK, and MAC). This work is proposed to answer the AMTL needed before implementing any cognitive based WSN algorithms. Various time intervals and cogitative channel usage with different application payload are used for the result analysis. Through extensive simulations, our mechanism is able to identify the average time intervals needed depending on the load and MN broadcast interval in any cognitive WSN.

  • WSN-HaDaS: A Cross-Layer Handoff Management Protocol for Wireless Sensor Networks, a Practical Approach to Mobility

    Raymundo BUENROSTRO-MARISCAL  Maria COSIO-LEON  Juan-Ivan NIETO-HIPOLITO  Juan-Antonio GUERRERO-IBANEZ  Mabel VAZQUEZ-BRISENO  Juan-de-Dios SANCHEZ-LOPEZ  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:7
      Page(s):
    1333-1344

    Wireless Sensor Networks (WSNs) have been proposed for monitoring vital signs of patients at home. This scenario requires inter-cell mobility; however, WSNs are not designed to support this characteristic. In this paper we propose a cross-layer protocol to manage the handoff, called WSN-HaDaS (Handoff aware of Data Sending), which operates in the transport layer and medium access control (MAC) sub-layer based on an interaction between the layers (transport and MAC). This protocol interacts with a sending data mechanism (like TCP protocol) to notify the beginning or ending of the handoff process; therefore, the mechanism can stop or resume data sending, respectively. Therefore, WSN-HaDaS prevents packet loss during the handoff process. WSN-HaDaS comprises two main processes to manage mobility: Monitoring Handoff Trigger (MHT) and Handoff Execution Process (HEP); they are responsible for generating the handoff warning messages and executing the handoff process, respectively. Therefore, MHT delay and HEP delay are used as the key performance metrics. To evaluate the proposal, we use a physical test-bed in an indoor environment with the intention of obtaining practical results. The results demonstrate that the proposed protocol performs the handoff process with less delay than the selected reference work. They also show that WSN-HaDaS is an appropriate solution to provide inter-cell mobility in WSNs. Furthermore, we demonstrate the possibility of embedding the WSN-HaDaS in devices with limited resources using the IEEE 802.1.5.4 standard.