1-1hit |
Khalid MAHMOOD Asif RAZA Madan KRISHNAMURTHY Hironao TAKAHASHI
The growing trends in Internet usage for data and knowledge sharing calls for dynamic classification of web contents, particularly at the edges of the Internet. Rather than considering Linked Data as an integral part of Big Data, we propose Autonomous Decentralized Semantic-based Content Classifier (ADSCC) for dynamic classification of unstructured web contents, using Linked Data and web metadata in Content Delivery Network (CDN). The proposed framework ensures efficient categorization of URLs (even overlapping categories) by dynamically mapping the changing user-defined categories to ontologies' category/classes. This dynamic classification is performed by the proposed system that mainly involves three main algorithms/modules: Dynamic Mapping algorithm, Autonomous coordination-based Inference algorithm, and Context-based disambiguation. Evaluation results show that the proposed system achieves (on average), the precision, recall and F-measure within the 93-97% range.