1-1hit |
Takaaki KISHIGAMI Tadashi MORITA Hirohito MUKAI Maiko OTANI Yoichi NAKAGAWA
This paper reports an advanced millimeter-wave radar system to enable detection of vehicles and pedestrians in wide areas around the radar site such as an intersection. We focus on a pulse coding scheme using complementary codes to reduce range sidelobe for discriminating vehicles from pedestrians with high accuracy. In order to suppress sidelobe increase created by RF circuit imperfections, a π/2 shift pulse modulation method with a complementary code pair cycle is presented. Moreover, in order to improve the angular resolution, a high-resolution direction of arrival estimation involving Tx beam scanning is presented. Experiments on a prototype confirm its range sidelobe suppression exceeds 40dB and its angular resolution is 5° for two human's separation at the distance of about 10m in an anechoic chamber. In a trial intersection experiment, a pedestrian detection rate of 95% was achieved at the false alarm rate of 10% in the range from 5m to 40m. The results prove the system's feasibility for future automotive safety application.