1-2hit |
Hisashi OSAWA Makoto OKADA Kohei WAKAMIYA Yoshihiro OKAMOTO
The performance improvement of the partial response maximum-likelihood (PRML) system for (1, 7) run-length limited (RLL) code is studied. As a new PRML system, PR (1, 1, 0, 1, 1) system called modified E2PR4 (ME2PR4 ) followed by Viterbi detector for (1, 7) RLL code is proposed. At first, a determination method of the tap weights in transversal filter to equalize to PR (1, 1, 0, 1, 1) characteristic taking account of a noise correlation is described. And the equalization characteristics of the transversal filter are evaluated. Then, a Viterbi detector for ME2PR4 utilizing the constraint of run-length of (1, 7) RLL code is presented. Finally, the bit-error rate is obtained by computer simulation and the performance is compared with that of the conventional PRML systems called PR4, EPR4 and E2PR4 systems with Viterbi detector. The results show that among these systems our system exhibits the best performance and the SNR improvement increases with the increase in the linear density.
Masami SHISHIBORI Makoto OKADA Tooru SUMITOMO Jun-ichi AOE
In many applications, information retrieval is a very important research field. In several key strategies, the binary trie is famous as a fast access method able to retrieve keys in order. Especially, a Patricia trie gives the shallowest trie by eliminating all nodes which have only one arc, and it requires the smallest storage among the other trie structures. If trie structures are implemented, however, the greater the number of the registered keys, the larger storage is required. In order to solve this problem, Jonge et al. proposed a method to change the normal binary trie into a compact bit stream. This paper proposes the improved trie representation for the Patricia trie, as well as the methods for searching and inserting the key on it. The theoretical and experimental results, using 50,000 Japanese nouns and 50,000 English words, show that this method generates 25-39 percent shorter bit streams than the traditional method. This method, thus, enables us to provide more compact storage and faster access than the traditional method.