The search functionality is under construction.

Author Search Result

[Author] Manabu TSUJIMOTO(2hit)

1-2hit
  • Approaches to High Performance Terahertz-Waves Emitting Devices Utilizing Single Crystals of High Temperature Superconductor Bi2Sr2CaCu2O8+δ Open Access

    Takanari KASHIWAGI  Genki KUWANO  Shungo NAKAGAWA  Mayu NAKAYAMA  Jeonghyuk KIM  Kanae NAGAYAMA  Takuya YUHARA  Takuya YAMAGUCHI  Yuma SAITO  Shohei SUZUKI  Shotaro YAMADA  Ryuta KIKUCHI  Manabu TSUJIMOTO  Hidetoshi MINAMI  Kazuo KADOWAKI  

     
    INVITED PAPER

      Pubricized:
    2022/12/12
      Vol:
    E106-C No:6
      Page(s):
    281-288

    Our group has developed terahertz(THz)-waves emitting devices utilizing single crystals of high temperature superconductor Bi2Sr2CaCu2O8+δ (Bi2212). The working principle of the device is based on the AC Josephson effect which is originated in the intrinsic Josephson junctions (IJJs) constructed in Bi2212 single crystals. In principle, based on the superconducting gap of the compound and the AC Josephson effect, the emission frequency range from 0.1 to 15 THz can be generated by simply adjusting bias voltages to the IJJs. In order to improve the device performances, we have performed continuous improvement to the device structures. In this paper, we present our recent approaches to high performance Bi2212 THz-waves emitters. Firstly, approaches to the reduction of self Joule heating of the devices is described. In virtue of improved device structures using Bi2212 crystal chips, the device characteristics, such as the radiation frequency and the output power, become better than previous structures. Secondly, developments of THz-waves emitting devices using IJJs-mesas coupled with external structures are explained. The results clearly indicate that the external structures are very useful not only to obtain desired radiation frequencies higher than 1 THz but also to control radiation frequency characteristics. Finally, approaches to further understanding of the spontaneous synchronization of IJJs is presented. The device characteristics obtained through the approaches would play important roles in future developments of THz-waves emitting devices by use of Bi2212 single crystals.

  • Terahertz Radiation Emitted from Intrinsic Josephson Junctions in High-Tc Superconductor Bi2Sr2CaCu2O8+δ Open Access

    Hidetoshi MINAMI  Manabu TSUJIMOTO  Takanari KASHIWAGI  Takashi YAMAMOTO  Kazuo KADOWAKI  

     
    INVITED PAPER

      Vol:
    E95-C No:3
      Page(s):
    347-354

    The present status of superconducting terahertz emitter using the intrinsic Josephson junctions in high-Tc superconductor Bi2Sr2CaCu2O8+δ is reviewed. Fabrication methods of the emitting device, electrical and optical characteristics of them, synchronizing operation of two emitters and an example of applications to the terahertz imaging will be discussed. After the description of fabrication techniques by an Argon ion milling with photolithography or metal masks and by a focused ion beam, optical properties of radiation spectra, the line width, polarization and the spatial distribution of emission are presented with some discussion on the operation mechanism. For electrical properties, reversible and irreversible operations at high and low electrical currents, respectively, and electrical modulation of the radiation intensity for terahertz imaging are presented.