1-3hit |
Xina CHENG Norikazu IKOMA Masaaki HONDA Takeshi IKENAGA
Significant challenges in ball tracking of sports analysis by computer vision technology are: 1) accuracy of estimated 3D ball trajectory under difficult conditions; 2) external forces added by players lead to irregular motions of the ball; 3) unpredictable situations in the real game, i.e. the ball occluded by players and other objects, complex background and changing lighting condition. With the goal of multi-view 3D ball tracking, this paper proposes an abrupt motion adaptive system model, an anti-occlusion observation model, and a spatial density-based automatic recovery based on particle filter. The system model combines two different system noises that cover the motion of the ball both in general situation and situation subject to abrupt motion caused by external force. Combination ratio of these two noises and number of particles are adaptive to the estimated motion by weight distribution of particles. The anti-occlusion observation model evaluates image feature of each camera and eliminates influence of the camera with less confidence. The spatial density, which is calculated based on 3D ball candidates filtered out by spatial homographic relationship between cameras, is proposed for generating new set of particles to recover the tracking when tracking failure is detected. Experimental results based on HDTV video sequences (2014 Inter High School Men's Volleyball Games, Japan), which were captured by four cameras located at each corner of the court, show that the success rate achieved by the proposals of 3D ball tracking is 99.42%.
We present a speaker adaptation method that makes it possible to determine articulatory parameters from an unknown speaker's speech spectrum using an HMM (Hidden Markov Model)-based speech production model. The model consists of HMMs of articulatory parameters for each phoneme and an articulatory-to-acoustic mapping that transforms the articulatory parameters into a speech spectrum for each HMM state. The model is statistically constructed by using actual articulatory-acoustic data. In the adaptation method, geometrical differences in the vocal tract as well as the articulatory behavior in the reference model are statistically adjusted to an unknown speaker. First, the articulatory parameters are estimated from an unknown speaker's speech spectrum using the reference model. Secondly, the articulatory-to-acoustic mapping is adjusted by maximizing the output probability of the acoustic parameters for the estimated articulatory parameters of the unknown speaker. With the adaptation method, the RMS error between the estimated articulatory parameters and the observed ones is 1.65 mm. The improvement rate over the speaker independent model is 56.1 %.
Xina CHENG Norikazu IKOMA Masaaki HONDA Takeshi IKENAGA
The ball state tracking and detection technology plays a significant role in volleyball game analysis, whose performance is limited due to the challenges include: 1) the inaccurate ball trajectory; 2) multiple numbers of the ball event category; 3) the large intra-class difference of one event. With the goal of broadcasting supporting for volleyball games which requires a real time system, this paper proposes a ball state based parallel ball tracking and event detection method based on a sequential estimation method such as particle filter. This method employs a parallel process of the 3D ball tracking and the event detection so that it is friendly for real time system implementation. The 3D ball tracking process uses the same models with the past work [8]. For event detection process, a ball event change estimation based multiple system model, a past trajectory referred hit point likelihood and a court-line distance feature based event type detection are proposed. First, the multiple system model transits the ball event state, which consists the event starting time and the event type, through three models dealing with different ball motion situations in the volleyball game, such as the motion keeping and changing. The mixture of these models is decided by estimation of the ball event change estimation. Secondly, the past trajectory referred hit point likelihood avoids the processing time delay between the ball tracking and the event detection process by evaluating the probability of the ball being hit at certain time without using future ball trajectories. Third, the feature of the distance between the ball and the specific court line are extracted to detect the ball event type. Experimental results based on multi-view HDTV video sequences (2014 Inter High School Men's Volleyball Games, Japan), which contains 606 events in total, show that the detection rate reaches 88.61% while the success rate of 3D ball tracking keeps more than 99%.