1-4hit |
Recent studies have obtained superior performance in image recognition tasks by using, as an image representation, the fully connected layer activations of Convolutional Neural Networks (CNN) trained with various kinds of images. However, the CNN representation is not very suitable for fine-grained image recognition tasks involving food image recognition. For improving performance of the CNN representation in food image recognition, we propose a novel image representation that is comprised of the covariances of convolutional layer feature maps. In the experiment on the ETHZ Food-101 dataset, our method achieved 58.65% averaged accuracy, which outperforms the previous methods such as the Bag-of-Visual-Words Histogram, the Improved Fisher Vector, and CNN-SVM.
Web search queries are usually vague, ambiguous, or tend to have multiple intents. Users have different search intents while issuing the same query. Understanding the intents through mining subtopics underlying a query has gained much interest in recent years. Query suggestions provided by search engines hold some intents of the original query, however, suggested queries are often noisy and contain a group of alternative queries with similar meaning. Therefore, identifying the subtopics covering possible intents behind a query is a formidable task. Moreover, both the query and subtopics are short in length, it is challenging to estimate the similarity between a pair of short texts and rank them accordingly. In this paper, we propose a method for mining and ranking subtopics where we introduce multiple semantic and content-aware features, a bipartite graph-based ranking (BGR) method, and a similarity function for short texts. Given a query, we aggregate the suggested queries from search engines as candidate subtopics and estimate the relevance of them with the given query based on word embedding and content-aware features by modeling a bipartite graph. To estimate the similarity between two short texts, we propose a Jensen-Shannon divergence based similarity function through the probability distributions of the terms in the top retrieved documents from a search engine. A diversified ranked list of subtopics covering possible intents of a query is assembled by balancing the relevance and novelty. We experimented and evaluated our method on the NTCIR-10 INTENT-2 and NTCIR-12 IMINE-2 subtopic mining test collections. Our proposed method outperforms the baselines, known related methods, and the official participants of the INTENT-2 and IMINE-2 competitions.
Abu Nowshed CHY Md Zia ULLAH Masaki AONO
Microblog, especially twitter, has become an integral part of our daily life for searching latest news and events information. Due to the short length characteristics of tweets and frequent use of unconventional abbreviations, content-relevance based search cannot satisfy user's information need. Recent research has shown that considering temporal and contextual aspects in this regard has improved the retrieval performance significantly. In this paper, we focus on microblog retrieval, emphasizing the alleviation of the vocabulary mismatch, and the leverage of the temporal (e.g., recency and burst nature) and contextual characteristics of tweets. To address the temporal and contextual aspect of tweets, we propose new features based on query-tweet time, word embedding, and query-tweet sentiment correlation. We also introduce some popularity features to estimate the importance of a tweet. A three-stage query expansion technique is applied to improve the relevancy of tweets. Moreover, to determine the temporal and sentiment sensitivity of a query, we introduce query type determination techniques. After supervised feature selection, we apply random forest as a feature ranking method to estimate the importance of selected features. Then, we make use of ensemble of learning to rank (L2R) framework to estimate the relevance of query-tweet pair. We conducted experiments on TREC Microblog 2011 and 2012 test collections over the TREC Tweets2011 corpus. Experimental results demonstrate the effectiveness of our method over the baseline and known related works in terms of precision at 30 (P@30), mean average precision (MAP), normalized discounted cumulative gain at 30 (NDCG@30), and R-precision (R-Prec) metrics.
Umme Aymun SIDDIQUA Abu Nowshed CHY Masaki AONO
Stance detection in twitter aims at mining user stances expressed in a tweet towards a single or multiple target entities. Detecting and analyzing user stances from massive opinion-oriented twitter posts provide enormous opportunities to journalists, governments, companies, and other organizations. Most of the prior studies have explored the traditional deep learning models, e.g., long short-term memory (LSTM) and gated recurrent unit (GRU) for detecting stance in tweets. However, compared to these traditional approaches, recently proposed densely connected bidirectional LSTM and nested LSTMs architectures effectively address the vanishing-gradient and overfitting problems as well as dealing with long-term dependencies. In this paper, we propose a neural network model that adopts the strengths of these two LSTM variants to learn better long-term dependencies, where each module coupled with an attention mechanism that amplifies the contribution of important elements in the final representation. We also employ a multi-kernel convolution on top of them to extract the higher-level tweet representations. Results of extensive experiments on single and multi-target benchmark stance detection datasets show that our proposed method achieves substantial improvement over the current state-of-the-art deep learning based methods.