The search functionality is under construction.

Author Search Result

[Author] Masaki ONUKI(2hit)

1-2hit
  • Design of Optimized Prefilters for Time-Domain Lapped Transforms with Various Downsampling Factors

    Masaki ONUKI  Yuichi TANAKA  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:9
      Page(s):
    1907-1917

    Decimation and interpolation methods are utilized in image coding for low bit rate image coding. However, the decimation filter (prefilter) and the interpolation filter (postfilter) are irreversible with each other since the prefilter is a wide matrix (a matrix whose number of columns are larger than that of rows) and the postfilter is a tall one (a matrix whose number of rows are larger than that of columns). There will be some distortions in the reconstructed image even without any compression. The method of interpolation-dependent image downsampling (IDID) was used to tackle the problem of producing optimized downsampling images, which led to the optimized prefilter of a given postfilter. We propose integrating the IDID with time-domain lapped transforms (TDLTs) to improve image coding performance.

  • Non-Blind Deconvolution of Point Cloud Attributes in Graph Spectral Domain

    Kaoru YAMAMOTO  Masaki ONUKI  Yuichi TANAKA  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1751-1759

    We propose a non-blind deconvolution algorithm of point cloud attributes inspired by multi-Wiener SURE-LET deconvolution for images. The image reconstructed by the SURE-LET approach is expressed as a linear combination of multiple filtered images where the filters are defined on the frequency domain. The coefficients of the linear combination are calculated so that the estimate of mean squared error between the original and restored images is minimized. Although the approach is very effective, it is only applicable to images. Recently we have to handle signals on irregular grids, e.g., texture data on 3D models, which are often blurred due to diffusion or motions of objects. However, we cannot utilize image processing-based approaches straightforwardly since these high-dimensional signals cannot be transformed into their frequency domain. To overcome the problem, we use graph signal processing (GSP) for deblurring the complex-structured data. That is, the SURE-LET approach is redefined on GSP, where the Wiener-like filtering is followed by the subband decomposition with an analysis graph filter bank, and then thresholding for each subband is performed. In the experiments, the proposed method is applied to blurred textures on 3D models and synthetic sparse data. The experimental results show clearly deblurred signals with SNR improvements.