The search functionality is under construction.

Author Search Result

[Author] Masanori ISHINO(3hit)

1-3hit
  • A Routing-Based Mobility Management Scheme for IoT Devices in Wireless Mobile Networks Open Access

    Masanori ISHINO  Yuki KOIZUMI  Toru HASEGAWA  

     
    PAPER

      Vol:
    E98-B No:12
      Page(s):
    2376-2381

    Internet of Things (IoT) devices, which have different characteristics in mobility and communication patterns from traditional mobile devices such as cellular phones, have come into existence as a new type of mobile devices. A strict mobility management scheme for providing highly mobile devices with seamless access is over-engineered for IoT devices' mobility management. We revisit current mobility management schemes for wireless mobile networks based on identifier/locator separation. In this paper, we focus on IoT communication patterns, and propose a new routing-based mobility scheme for them. Our scheme adopts routing information aggregation scheme using the Bloom Filter as a data structure to store routing information. We clarify the effectiveness of our scheme in IoT environments with a large number of IoT devices, and discuss its deployment issues.

  • Routing-Based Mobility Architecture for Future 5G Cellular Networks Open Access

    Yo NISHIYAMA  Masanori ISHINO  Yuki KOIZUMI  Toru HASEGAWA  Kohei SUGIYAMA  Atsushi TAGAMI  

     
    PAPER-Network

      Pubricized:
    2017/03/01
      Vol:
    E100-B No:10
      Page(s):
    1789-1797

    In the 5G era, centralized mobility management raises the issue of traffic concentration on the mobility anchor. Distributed mobility management is expected to be a solution for this issue, as it moves mobility anchor functions to multiple edge routers. However, it incurs path stretch and redundant traffic on the backhaul links. Although these issues were not considered important in the 3G/4G era, they are expected to be a serious problem in the 5G era. In this paper, we design a routing-based mobility management mechanism to address the above problems. The mechanism integrates distributed routing with Bloom Filters and an anchor-less scheme where edge routers work as mobility anchors. Simulations show that the proposed mechanism achieves a good balance between redundant traffic on the backhaul links and routing overhead.

  • Relay Mobile Device Discovery with Proximity Services for User-Provided IoT Networks

    Masanori ISHINO  Yuki KOIZUMI  Toru HASEGAWA  

     
    PAPER-Network

      Pubricized:
    2017/05/19
      Vol:
    E100-B No:11
      Page(s):
    2038-2048

    Internet of Things (IoT) devices deployed in urban areas are seen as data sources for urban sensing IoT applications. Since installing cellular interfaces on a huge number of IoT devices is expensive, we propose to use a user equipment (UE) device with a local wireless interface as a mobile IoT gateway for fixed IoT devices. In this paper, we design a new mobile architecture based on cellular networks to accommodate non-cellular fixed IoT devices by UE devices working as IoT gateways. One key feature is that our architecture leverages proximity services (ProSe) to discover relay UE devices with low overhead in terms of discovery messages. Through simulation studies, we clarify the feasibility of our architecture including the relay UE discovery mechanism in urban areas.