1-4hit |
Masashi NOMURA Shigemasa TAKAI
In this paper, we study decentralized supervisory control of timed discrete event systems, where we adopt the OR rule for fusing local enablement decisions and the AND rule for fusing local enforcement decisions. Under these rules, necessary and sufficient conditions for the existence of a decentralized supervisor that achieves a given specification language are easily obtained from the result of literature. If a given specification language does not satisfy these existence conditions, we must compute its sublanguage satisfying them. The main contribution of this paper is proposing a method for computing such a sublanguage.
Masashi NOMURA Shigemasa TAKAI
In this paper, we study decentralized supervisory control of timed discrete event systems, where we adopt the OR rule for fusing local enablement decisions and the AND rule for fusing local enforcement decisions. For any specification language satisfying a certain assumption, we propose a method for constructing a decentralized supervisor that achieves its sublanguage. The proposed method does not require computing the achieved sublanguage.
Masashi NOMURA Shigemasa TAKAI
In the framework of supervisory control of timed discrete event systems (TDESs), a supervisor decides the set of events to be enabled to occur and the set of events to be forced to occur in order for a given specification to be satisfied. In this paper, we consider decentralized supervisory control of TDESs where enforcement decisions of local supervisors are fused by the AND rule or the OR rule. We derive existence conditions of a decentralized supervisor under these decision fusion rules.
Masashi NOMURA Shigemasa TAKAI
In the framework of decentralized supervisory control of timed discrete event systems (TDESs), each local supervisor decides the set of events to be enabled to occur and the set of events to be forced to occur under its own local observation in order for a given specification to be satisfied. In this paper, we focus on fusion rules for the enforcement decisions and adopt the combined fusion rule using the AND rule and the OR rule. We first derive necessary and sufficient conditions for the existence of a decentralized supervisor under the combined fusion rule for a given partition of the set of forcible events. We next study how to find a suitable partition.