The search functionality is under construction.

Author Search Result

[Author] Masatake DANTSUJI(5hit)

1-5hit
  • Investigation on e-Learning Status Estimation for New Learners — Classifier Selection on Representative Sample Selection

    Siyang YU  Kazuaki KONDO  Yuichi NAKAMURA  Takayuki NAKAJIMA  Masatake DANTSUJI  

     
    LETTER-Educational Technology

      Pubricized:
    2020/01/20
      Vol:
    E103-D No:4
      Page(s):
    905-909

    This article introduces our investigation on learning state estimation in e-learning on the condition that visual observation and recording of a learner's behaviors is possible. In this research, we examined methods of adaptation for a new learner for whom a small number of ground truth data can be obtained.

  • Visual Emphasis of Lip Protrusion for Pronunciation Learning

    Siyang YU  Kazuaki KONDO  Yuichi NAKAMURA  Takayuki NAKAJIMA  Hiroaki NANJO  Masatake DANTSUJI  

     
    PAPER-Educational Technology

      Pubricized:
    2018/10/22
      Vol:
    E102-D No:1
      Page(s):
    156-164

    Pronunciation is a fundamental factor in speaking and listening. However, instructions for important articulation have not been sufficiently provided in conventional computer-assisted language learning (CALL) systems. One typical case is the articulation of rounded vowels. Although lip protrusion is essential for their correct pronunciation, the perception of lip protrusion is often difficult for beginners. To tackle this issue, we propose an innovative method that will provide a comprehensive visual explanation for articulation. Lip movements are three-dimensionally measured, and face images or videos are pseudocoloured on the basis of the movements. The coloured regions represent the lip protrusion of rounded vowels. To verify the learning effect of the proposed method, we conducted experiments with Japanese undergraduates in Chinese classes. The results showed that our method has advantages over conventional video materials.

  • Japanese Pronunciation Instruction System Using Speech Recognition Methods

    Chul-Ho JO  Tatsuya KAWAHARA  Shuji DOSHITA  Masatake DANTSUJI  

     
    PAPER-Speech and Hearing

      Vol:
    E83-D No:11
      Page(s):
    1960-1968

    We propose a new CALL (Computer-Assisted Language Learning) system for non-native learners of Japanese using speech recognition methods. The aim of the system is to help them develop natural pronunciation by automatically detecting their pronunciation errors and then providing effective feedback instruction. An automatic scoring method based on HMM log-likelihood is used to assess their pronunciation. Native speakers' scores are normalized by the mean and standard deviation for each phoneme and are used as threshold values to detect pronunciation errors. Unlike previous CALL systems, we not only detect pronunciation errors but also generate appropriate feedback to improve them. Especially for the feedback of consonants, we propose a novel method based on the classification of the place and manner of articulation. The effectiveness of our system is demonstrated with preliminary trials by several non-native speakers.

  • Articulatory Modeling for Pronunciation Error Detection without Non-Native Training Data Based on DNN Transfer Learning

    Richeng DUAN  Tatsuya KAWAHARA  Masatake DANTSUJI  Jinsong ZHANG  

     
    PAPER-Speech and Hearing

      Pubricized:
    2017/05/26
      Vol:
    E100-D No:9
      Page(s):
    2174-2182

    Aiming at detecting pronunciation errors produced by second language learners and providing corrective feedbacks related with articulation, we address effective articulatory models based on deep neural network (DNN). Articulatory attributes are defined for manner and place of articulation. In order to efficiently train these models of non-native speech without such data, which is difficult to collect in a large scale, several transfer learning based modeling methods are explored. We first investigate three closely-related secondary tasks which aim at effective learning of DNN articulatory models. We also propose to exploit large speech corpora of native and target language to model inter-language phenomena. This kind of transfer learning can provide a better feature representation of non-native speech. Related task transfer and language transfer learning are further combined on the network level. Compared with the conventional DNN which is used as the baseline, all proposed methods improved the performance. In the native attribute recognition task, the network-level combination method reduced the recognition error rate by more than 10% relative for all articulatory attributes. The method was also applied to pronunciation error detection in Mandarin Chinese pronunciation learning by Japanese native speakers, and achieved the relative improvement up to 17.0% for detection accuracy and up to 19.9% for F-score, which is also better than the lattice-based combination.

  • Learning State Recognition in Self-Paced E-Learning

    Siyang YU  Kazuaki KONDO  Yuichi NAKAMURA  Takayuki NAKAJIMA  Masatake DANTSUJI  

     
    PAPER-Educational Technology

      Pubricized:
    2016/11/21
      Vol:
    E100-D No:2
      Page(s):
    340-349

    Self-paced e-learning provides much more freedom in time and locale than traditional education as well as diversity of learning contents and learning media and tools. However, its limitations must not be ignored. Lack of information on learners' states is a serious issue that can lead to severe problems, such as low learning efficiency, motivation loss, and even dropping out of e-learning. We have designed a novel e-learning support system that can visually observe learners' non-verbal behaviors and estimate their learning states and that can be easily integrated into practical e-learning environments. Three pairs of internal states closely related to learning performance, concentration-distraction, difficulty-ease, and interest-boredom, were selected as targets of recognition. In addition, we investigated the practical problem of estimating the learning states of a new learner whose characteristics are not known in advance. Experimental results show the potential of our system.