The search functionality is under construction.

Author Search Result

[Author] Masatoshi HORI(2hit)

1-2hit
  • Sparse and Low-Rank Matrix Decomposition for Local Morphological Analysis to Diagnose Cirrhosis

    Junping DENG  Xian-Hua HAN  Yen-Wei CHEN  Gang XU  Yoshinobu SATO  Masatoshi HORI  Noriyuki TOMIYAMA  

     
    PAPER-Biological Engineering

      Pubricized:
    2014/08/26
      Vol:
    E97-D No:12
      Page(s):
    3210-3221

    Chronic liver disease is a major worldwide health problem. Diagnosis and staging of chronic liver diseases is an important issue. In this paper, we propose a quantitative method of analyzing local morphological changes for accurate and practical computer-aided diagnosis of cirrhosis. Our method is based on sparse and low-rank matrix decomposition, since the matrix of the liver shapes can be decomposed into two parts: a low-rank matrix, which can be considered similar to that of a normal liver, and a sparse error term that represents the local deformation. Compared with the previous global morphological analysis strategy based on the statistical shape model (SSM), our proposed method improves the accuracy of both normal and abnormal classifications. We also propose using the norm of the sparse error term as a simple measure for classification as normal or abnormal. The experimental results of the proposed method are better than those of the state-of-the-art SSM-based methods.

  • Segmentation of Liver in Low-Contrast Images Using K-Means Clustering and Geodesic Active Contour Algorithms Open Access

    Amir H. FORUZAN  Yen-Wei CHEN  Reza A. ZOROOFI  Akira FURUKAWA  Yoshinobu SATO  Masatoshi HORI  Noriyuki TOMIYAMA  

     
    PAPER-Medical Image Processing

      Vol:
    E96-D No:4
      Page(s):
    798-807

    In this paper, we present an algorithm to segment the liver in low-contrast CT images. As the first step of our algorithm, we define a search range for the liver boundary. Then, the EM algorithm is utilized to estimate parameters of a 'Gaussian Mixture' model that conforms to the intensity distribution of the liver. Using the statistical parameters of the intensity distribution, we introduce a new thresholding technique to classify image pixels. We assign a distance feature vectors to each pixel and segment the liver by a K-means clustering scheme. This initial boundary of the liver is conditioned by the Fourier transform. Then, a Geodesic Active Contour algorithm uses the boundaries to find the final surface. The novelty in our method is the proper selection and combination of sub-algorithms so as to find the border of an object in a low-contrast image. The number of parameters in the proposed method is low and the parameters have a low range of variations. We applied our method to 30 datasets including normal and abnormal cases of low-contrast/high-contrast images and it was extensively evaluated both quantitatively and qualitatively. Minimum of Dice similarity measures of the results is 0.89. Assessment of the results proves the potential of the proposed method for segmentation in low-contrast images.